Abstract Engineering the properties of quantum materials via strong light-matter coupling is a compelling research direction with a multiplicity of modern applications. Those range from modifying charge transport in organic molecules, steering particle correlation and interactions, and even controlling chemical reactions. Here, we study the modification of the material properties via strong coupling and demonstrate an effective inversion of the excitonic band-ordering in a monolayer of WSe 2 with spin-forbidden, optically dark ground state. In our experiments, we harness the strong light-matter coupling between cavity photon and the high energy, spin-allowed bright exciton, and thus creating two bright polaritonic modes in the optical bandgap with the lower polariton mode pushed below the WSe 2 dark state. We demonstrate that in this regime the commonly observed luminescence quenching stemming from the fast relaxation to the dark ground state is prevented, which results in the brightening of this intrinsically dark material. We probe this effective brightening by temperature-dependent photoluminescence, and we find an excellent agreement with a theoretical model accounting for the inversion of the band ordering and phonon-assisted polariton relaxation.
more »
« less
Temperature relaxation in strongly-coupled binary ionic mixtures
Abstract New facilities such as the National Ignition Facility and the Linac Coherent Light Source have pushed the frontiers of high energy-density matter. These facilities offer unprecedented opportunities for exploring extreme states of matter, ranging from cryogenic solid-state systems to hot, dense plasmas, with applications to inertial-confinement fusion and astrophysics. However, significant gaps in our understanding of material properties in these rapidly evolving systems still persist. In particular, non-equilibrium transport properties of strongly-coupled Coulomb systems remain an open question. Here, we study ion-ion temperature relaxation in a binary mixture, exploiting a recently-developed dual-species ultracold neutral plasma. We compare measured relaxation rates with atomistic simulations and a range of popular theories. Our work validates the assumptions and capabilities of the simulations and invalidates theoretical models in this regime. This work illustrates an approach for precision determinations of detailed material properties in Coulomb mixtures across a wide range of conditions.
more »
« less
- Award ID(s):
- 2009999
- PAR ID:
- 10333560
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this work, we report the development and assessment of the nonadiabatic molecular dynamics approach with the electronic structure calculations based on the linearly scaling subsystem density functional method. The approach is implemented in an open-source embedded Quantum Espresso/Libra software specially designed for nonadiabatic dynamics simulations in extended systems. As proof of the applicability of this method to large condensed-matter systems, we examine the dynamics of nonradiative relaxation of excess excitation energy in pentacene crystals with the simulation supercells containing more than 600 atoms. We find that increased structural disorder observed in larger supercell models induces larger nonadiabatic couplings of electronic states and accelerates the relaxation dynamics of excited states. We conduct a comparative analysis of several quantum-classical trajectory surface hopping schemes, including two new methods proposed in this work (revised decoherence-induced surface hopping and instantaneous decoherence at frustrated hops). Most of the tested schemes suggest fast energy relaxation occurring with the timescales in the 0.7–2.0 ps range, but they significantly overestimate the ground state recovery rates. Only the modified simplified decay of mixing approach yields a notably slower relaxation timescales of 8–14 ps, with a significantly inhibited ground state recovery.more » « less
-
Multiple particle tracking microrheology (MPT) is a powerful tool for quantitatively characterizing rheological properties of soft matter. Traditionally, MPT uses a single particle size to characterize rheological properties. But in complex systems, MPT measurements with a single size particle can characterize distinct properties that are linked to the materials' length scale dependent structure. By varying the size of probes, MPT can measure the properties associated with different length scales within a material. We develop a technique to simultaneously track a bi-disperse population of probe particles. 0.5 and 2 μm particles are embedded in the same sample and these particle populations are tracked separately using a brightness-based squared radius of gyration, R g 2 . Bi-disperse MPT is validated by measuring the viscosity of glycerol samples at varying concentrations. Bi-disperse MPT measurements agree well with literature values. This technique then characterizes a homogeneous poly(ethylene glycol)-acrylate:poly(ethylene glycol)-dithiol gelation. The critical relaxation exponent and critical gelation time are consistent and agree with previous measurements using a single particle. Finally, degradation of a heterogeneous hydrogenated castor oil colloidal gel is characterized. The two particle sizes measure a different value of the critical relaxation exponent, indicating that they are probing different structures. Analysis of material heterogeneity shows measured heterogeneity is dependent on probe size indicating that each particle is measuring rheological evolution of a length scale dependent structure. Overall, bi-disperse MPT increases the amount of information gained in a single measurement, enabling more complete characterization of complex systems that range from consumer care products to biological materials.more » « less
-
Trapped ions offer long coherence times and high fidelity, programmable quantum operations, making them a promising platform for quantum simulation of condensed matter systems, quantum dynamics, and problems related to high-energy physics. We review selected developments in trapped-ion qubits and architectures and discuss quantum simulation applications that utilize these emerging capabilities. This review emphasizes developments in digital (gate-based) quantum simulations that exploit trapped-ion hardware capabilities, such as flexible qubit connectivity, selective mid-circuit measurement, and classical feedback, to simulate models with long-range interactions, explore nonunitary dynamics, compress simulations of states with limited entanglement, and reduce the circuit depths required to prepare or simulate long-range entangled states.more » « less
-
Hyperuniformity, the suppression of density fluctuations at large length scales, is observed across a wide variety of domains, from cosmology to condensed matter and biological systems. Although the standard definition of hyperuniformity only utilizes information at the largest scales, hyperuniform configurations have distinctive local characteristics. However, the influence of global hyperuniformity on local structure has remained largely unexplored; establishing this connection can help uncover long-range interaction mechanisms and detect hyperuniform traits in finite-size systems. Here, we study the topological properties of hyperuniform point clouds by characterizing their persistent homology and the statistics of local graph neighborhoods. We find that varying the structure factor results in configurations with systematically different topological properties. Moreover, these topological properties are conserved for subsets of hyperuniform point clouds, establishing a connection between finite-sized systems and idealized reference arrangements. Comparing distributions of local topological neighborhoods reveals that the hyperuniform arrangements lie along a primarily one-dimensional manifold reflecting an order-to-disorder transition via hyperuniform configurations. The results presented here complement existing characterizations of hyperuniform phases of matter, and they show how local topological features can be used to detect hyperuniformity in size-limited simulations and experiments. Published by the American Physical Society2024more » « less
An official website of the United States government

