skip to main content


Title: PAC-Wrap: Semi-Supervised PAC Anomaly Detection
Award ID(s):
2046874
NSF-PAR ID:
10333616
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
KDD
ISSN:
2154-817X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The tension between deduction and induction is perhaps the most fundamental issue in areas such as philosophy, cognition, and artificial intelligence. In an influential paper,Valiantrecognized that the challenge of learning should be integrated with deduction. In particular, he proposed a semantics to capture the quality possessed by the output ofprobably approximately correct(PAC) learning algorithms when formulated in a logic. Although weaker than classical entailment, it allows for a powerful model-theoretic framework for answering queries. In this paper, we provide a new technical foundation to demonstrate PAC learning with multi-agent epistemic logics. To circumvent the negative results in the literature on the difficulty of robust learning with the PAC semantics, we consider so-called implicit learning where we are able to incorporate observations to the background theory in service of deciding the entailment of an epistemic query. We prove correctness of the learning procedure and discuss results on the sample complexity, that is how many observations we will need to provably assert that the query is entailed given a user-specified error bound. Finally, we investigate under what circumstances this algorithm can be made efficient. On the last point, given that reasoning in epistemic logics especially in multi-agent epistemic logics is PSPACE-complete, it might seem like there is no hope for this problem. We leverage some recent results on the so-calledRepresentation Theoremexplored for single-agent and multi-agent epistemic logics with theonly knowingoperator to reduce modal reasoning to propositional reasoning. 
    more » « less
  2. Approaches for stochastic nonlinear model predictive control (SNMPC) typically make restrictive assumptions about the system dynamics and rely on approximations to characterize the evolution of the underlying uncertainty distributions. For this reason, they are often unable to capture more complex distributions (e.g., non-Gaussian or multi-modal) and cannot provide accurate guarantees of performance. In this letter, we present a sampling-based SNMPC approach that leverages recently derived sample complexity bounds to certify the performance of a feedback policy without making assumptions about the system dynamics or underlying uncertainty distributions. By parallelizing our approach, we are able to demonstrate real-time receding-horizon SNMPC with statistical safety guarantees in simulation and on hardware using a 1/10th scale rally car and a 24-inch wingspan fixed-wing unmanned aerial vehicle (UAV). 
    more » « less