skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cosmic rays and the structure of the universe studied in Cosmic Ray Extremely Distributed Observatory with citizen science
More Like this
  1. ABSTRACT Recently, cosmic rays (CRs) have emerged as a leading candidate for driving galactic winds. Small-scale processes can dramatically affect global wind properties. We run two-moment simulations of CR streaming to study how sound waves are driven unstable by phase-shifted CR forces and CR heating. We verify linear theory growth rates. As the sound waves grow non-linear, they steepen into a quasi-periodic series of propagating shocks; the density jumps at shocks create CR bottlenecks. The depth of a propagating bottleneck depends on both the density jump and its velocity; ΔPc is smaller for rapidly moving bottlenecks. A series of bottlenecks creates a CR staircase structure, which can be understood from a convex hull construction. The system reaches a steady state between growth of new perturbations, and stair mergers. CRs are decoupled at plateaus, but exert intense forces and heating at stair jumps. The absence of CR heating at plateaus leads to cooling, strong gas pressure gradients and further shocks. If bottlenecks are stationary, they can drastically modify global flows; if their propagation times are comparable to dynamical times, their effects on global momentum and energy transfer are modest. The CR acoustic instability is likely relevant in thermal interfaces between cold and hot gas, as well as galactic winds. Similar to increased opacity in radiative flows, the build-up of CR pressure due to bottlenecks can significantly increase mass outflow rates, by up to an order of magnitude. It seeds unusual forms of thermal instability, and the shocks could have distinct observational signatures, on ∼kpc scales. 
    more » « less
  2. Lithium’s story spans the history of the universe and is one that links to all its largest-scale processes: big bang nucleosyntheses, the evolution of stars, and galactic chemical evolution. Lithium was the only metal produced in the big bang, alongside the gases H and He. Stars destroy both stable isotopes of Li easily, yet we still have Li today, even after generations of stars have come and gone. Ongoing production of Li by galactic cosmic rays and by a limited number of Li-producing nuclear reactions and transport processes in some rare types of stars keeps lithium present in the universe. 
    more » « less
  3. In the wake of major breakthroughs in General Relativity during the 1960s, Roger Penrose introduced Strong Cosmic Censorship, a profound conjecture regarding the deterministic nature of the theory. Penrose’s proposal has since opened far-reaching new mathematical avenues, revealing connections to fundamental questions about black holes and the nature of gravitational singularities. We review recent advances arising from modern techniques in the theory of partial differential equations as applied to Strong Cosmic Censorship, maintaining a focus on the context of gravitational collapse that gave birth to the conjecture. 
    more » « less