skip to main content

This content will become publicly available on January 1, 2023

Title: Cognitively Assistive Robots at Home: HRI Design Patterns for Translational Science
Much research in healthcare robotics explores ex- tending rehabilitative interventions to the home. However, for adults, little guidance exists on how to translate human-delivered, clinic-based interventions into robot-delivered, home-based ones to support longitudinal interaction. This is particularly problematic for neurorehabilitation, where adults with cognitive impairments require unique styles of interaction to avoid frustration or overstimulation. In this paper, we address this gap by exploring the design of robot-delivered neurorehabilitation interventions for people with mild cognitive impairment (PwMCI). Through a multi-year collaboration with clinical neuropsychologists and PwMCI, we developed robot prototypes which deliver cognitive training at home. We used these prototypes as design probes to understand how participants envision long-term deployment of the intervention, and how it can be contextualized to the lives of PwMCI. We report our findings and specify design patterns and considerations for translating neurorehabilitation interventions to robots. This work will serve as a basis for future endeavors to translate cognitive training and other clinical interventions onto a robot, support longitudinal engagement with home-deployed robots, and ultimately extend the accessibility of longitudinal health interventions for people with cognitive impairments.
Authors:
; ; ; ;
Award ID(s):
1915734
Publication Date:
NSF-PAR ID:
10333869
Journal Name:
Proceedings of the 17th Annual ACM/IEEE Conference on Human Robot Interaction (HRI)
Sponsoring Org:
National Science Foundation
More Like this
  1. An estimated 11% of adults report experiencing some form of cognitive decline which may be associated with conditions such as stroke or dementia, and can impact their memory, cognition, behavior, and physical abilities. While there are no known pharmacological treatments for many of these conditions, behavioral treatments such as cognitive training can prolong the independence of people with cognitive impairments. These treatments teach metacognitive strategies to compensate for memory difficulties in their everyday lives. Personalizing these treatments to suit the preferences and goals of an individual is critical to improving their engagement and sustainment, as well as maximizing the treatment’s effectiveness. Robots have great potential to facilitate these training regimens and support people with cognitive impairments, their caregivers, and clinicians. This article examines how robots can adapt their behavior to be personalized to an individual in the context of cognitive neurorehabilitation. We provide an overview of existing robots being used to support neurorehabilitation, and identify key principles to working in this space. We then examine state-of-the-art technical approaches to enabling longitudinal behavioral adaptation. To conclude, we discuss our recent work on enabling social robots to automatically adapt their behavior and explore open challenges for longitudinal behavior adaptation. This work willmore »help guide the robotics community as they continue to provide more engaging, effective, and personalized interactions between people and robots.« less
  2. 11% of adults report experiencing cognitive decline which can im- pact memory, behavior, and physical abilities. Robots have great potential to support people with cognitive impairments, their caregivers, and clinicians by facilitating treatments such as cognitive neurorehabilitation. Personalizing these treatments to individual preferences and goals is critical to improving engagement and adherence, which helps improve treatment efficacy. In our work, we explore the efficacy of robot-assisted neurorehabilitation and aim to enable robots to adapt their behavior to people with cognitive impairments, a unique population whose preferences and abilities may change dramatically during treatment. Our work aims to en- able more engaging and personalized interactions between people and robots, which can profoundly impact robot-assisted treatment, how people receive care, and improve their everyday lives.
  3. Robots have great potential to support people with dementia (PwD) and their caregivers. They can provide support for daily living tasks, conduct household chores, provide companionship, and deliver cognitive stimulation and training. Personalizing these robots to an individual’s abilities and preferences can help enhance the quality of support they provide, increase their usability and acceptability, and alleviate caregiver burden. However, personalization can also introduce many risks, including risks to the safety and autonomy of PwD, the potential to exacerbate social isolation, and risks of being taken advantage of due to dark patterns in robot design. In this article, we weigh the risks and benefits by drawing on empirical data garnered from the existing ecosystem of robots used for dementia caregiving. We also explore ethical considerations for developing personalized cognitively assistive robots for PwD, including how a robot can practice beneficence to PwD, where responsibility falls when harm to a PwD occurs because of a robot, and how a robot can acquire informed consent from a PwD. We propose key technical and policy concepts to help robot designers, lawmakers, and others to develop personalized robots that protect users from unintended consequences, particularly for people with cognitive impairments.
  4. Robots have great potential to support people with dementia (PwD) and their caregivers. They can provide support for daily living tasks, conduct household chores, provide companionship, and deliver cognitive stimulation and training. Personalizing these robots to an individual’s abilities and preferences can help enhance the quality of support they provide, increase their usability and acceptability, and alleviate caregiver burden. However, personalization can also introduce many risks, including risks to the safety and autonomy of PwD, the potential to exacerbate social isolation, and risks of being taken advantage of due to dark patterns in robot design. In this article, we weigh the risks and benefits by drawing on empirical data garnered from the existing ecosystem of robots used for dementia caregiving. We also explore ethical considerations for developing personalized cognitively assistive robots for PwD, including how a robot can practice beneficence to PwD, where responsibility falls when harm to a PwD occurs because of a robot, and how a robot can acquire informed consent from a PwD. We propose key technical and policy concepts to help robot designers, lawmakers, and others to develop personalized robots that protect users from unintended consequences, particularly for people with cognitive impairments.
  5. Background Cardiovascular disease (CVD) disparities are a particularly devastating manifestation of health inequity. Despite advancements in prevention and treatment, CVD is still the leading cause of death in the United States. Additionally, research indicates that African American (AA) and other ethnic-minority populations are affected by CVD at earlier ages than white Americans. Given that AAs are the fastest-growing population of smartphone owners and users, mobile health (mHealth) technologies offer the unparalleled potential to prevent or improve self-management of chronic disease among this population. Objective To address the unmet need for culturally tailored primordial prevention CVD–focused mHealth interventions, the MOYO app was cocreated with the involvement of young people from this priority community. The overall project aims to develop and evaluate the effectiveness of a novel smartphone app designed to reduce CVD risk factors among urban-AAs, 18-29 years of age. Methods The theoretical underpinning will combine the principles of community-based participatory research and the agile software development framework. The primary outcome goals of the study will be to determine the usability, acceptability, and functionality of the MOYO app, and to build a cloud-based data collection infrastructure suitable for digital epidemiology in a disparity population. Changes in health-related parameters over a 24-weekmore »period as determined by both passive (eg, physical activity levels, sleep duration, social networking) and active (eg, use of mood measures, surveys, uploading pictures of meals and blood pressure readings) measures will be the secondary outcome. Participants will be recruited from a majority AA “large city” school district, 2 historically black colleges or universities, and 1 urban undergraduate college. Following baseline screening for inclusion (administered in person), participants will receive the beta version of the MOYO app. Participants will be monitored during a 24-week pilot period. Analyses of varying data including social network dynamics, standard metrics of activity, percentage of time away from a given radius of home, circadian rhythm metrics, and proxies for sleep will be performed. Together with external variables (eg, weather, pollution, and socioeconomic indicators such as food access), these metrics will be used to train machine-learning frameworks to regress them on the self-reported quality of life indicators. Results This 5-year study (2015-2020) is currently in the implementation phase. We believe that MOYO can build upon findings of classical epidemiology and longitudinal studies like the Jackson Heart Study by adding greater granularity to our knowledge of the exposures and behaviors that affect health and disease, and creating a channel for outreach capable of launching interventions, clinical trials, and enhancements of health literacy. Conclusions The results of this pilot will provide valuable information about community cocreation of mHealth programs, efficacious design features, and essential infrastructure for digital epidemiology among young AA adults. International Registered Report Identifier (IRRID) DERR1-10.2196/16699« less