While scale cognition and learning is a crosscutting concept that pervades science and can aid students in making connections across disciplines, students struggle to conceptualize and consider scales that go far beyond their everyday world experience. Virtual reality technology affords embodied learning experiences, which enable students to physically engage in learning activities in an environment with rich information. Scale Worlds is a virtual learning environment implemented in an immersive CAVE, which portrays scientific entities of a wide range of sizes. A user can scale themself up or down by powers of ten, in order to experience entities from an atom to the Sun. This paper reports on an expert-based usability evaluation of Scale Worlds, including three sets of A/B testing, by five usability experts. Outcomes of the usability evaluation will inform the refinement of Scale Worlds. The evaluation provides insights for usability evaluation and design in immersive virtual environments.
more »
« less
Embodied Cognition in Virtual Reality to Support Learning of Scale
This work-in-progress poster reports on the development process of a virtual environment to support embodied cognition about the scale of scientific entities from subatomic particles to galaxies. Research shows that learners struggle to comprehend the sizes of entities beyond human scale. In order to determine specific entities to use in the virtual environment, a document analysis of US K-undergraduate science education standards was undertaken. Entities, categories of entities, and ranges of sizes were identified.
more »
« less
- Award ID(s):
- 2055680
- PAR ID:
- 10333872
- Date Published:
- Journal Name:
- Computersupported collaborative learning
- ISSN:
- 1573-4552
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Feedback-based iterative refinement is important in the development of any human-computer interface. The present work aims to evaluate and iteratively refine an immersive learning environment called Scale Worlds (SW), delivered via a head-mounted display (HMD). SW is a virtual learning environment encompassing scientific entities of a wide range of sizes that enables students an embodied experience while learning size and scale. Five usability experts performed think aloud while carrying out four interactive tasks in SW and compared three different design options during A/B testing. Improvement features based on the feedback from an earlier SW usability evaluation as well as HMD-specific features were examined. Usability experts completed the post-study system usability questionnaire, the NASA task load index, and a bipolar laddering survey that collected subjective perception of specific SW features. Results show that the progress panel (an improvement feature) was informative while the instructions (another improvement feature) caused clutter. The experts indicated clear usability preferences during A/B testing, which helped resolve three sets of theory-usability conflicts. The overall assessment of SW paved a path for theory-usability balance and provided valuable insights for designing and evaluating usability in immersive virtual learning environments.more » « less
-
Virtual reality (VR) is increasingly utilized in education, yet its effectiveness can vary due to potential distractions and excessive workload. Prior research suggests that virtual signaling elements can enhance learning in VR environments. However, the effectiveness of different design elements for specific learning content and their impact on learner workload remain understudied. This study examines the influence of graphic armatures, multimodal cues, and numeric measures on scale learning in Scale Worlds, a VR learning environment for exploring scientific entities across multiple scales. Preliminary results indicate that numeric measures notably enhance learning outcomes by providing direct scale representations. It shows that different virtual elements can variably affect learners’ scale learning outcomes and behaviors and can lead to varying levels of workload. This study underscores the importance of aligning the design of virtual elements with educational objectives and ensuring they induce an appropriate level of workload for learning in VR learning environment.more » « less
-
Virtual reality (VR) has been widely used for education and affords embodied learning experiences. Here we describe: Scale Worlds (SW), an immersive virtual environment to allow users to shrink or grow by powers of ten (10X) and experience entities from molecular to astronomical levels; and students’ impressions and outcomes from experiencing SW in a CAVE (Figure 1) during experiential summer outreach sessions. Data collected from post-visit surveys of 69 students, and field observations, revealed that VR technologies: enabled interactive learning experiences; encouraged active engagement and discussions among participating students; enhanced the understanding of size and scale; and increased interest in STEM careers.more » « less
-
Virtual content into a real environment. There are many factors that can affect the perceived physicality and co-presence of virtual entities, including the hardware capabilities, the fidelity of the virtual behaviors, and sensory feedback associated with the interactions. In this paper, we present a study investigating participants’ perceptions and behaviors during a time-limited search task in close proximity with virtual entities in AR. In particular, we analyze the effects of (i) visual conflicts in the periphery of an optical see-through head-mounted display, a Microsoft HoloLens, (ii) overall lighting in the physical environment, and (iii) multimodal feedback based on vibrotactile transducers mounted on a physical platform. Our results show significant benefits of vibrotactile feedback and reduced peripheral lighting for spatial and social presence, and engagement. We discuss implications of these effects for AR applications.more » « less
An official website of the United States government

