Controlling the self-assembly of carbon nanotube (CNT) forests is important for tailoring their ensemble properties for specific applications. In this study, real-time electrical resistance measurements of in-situ CNT forest syntheses was established as a method to interrogate the evolution of CNT forest morphology. The method employs in-situ scanning electron microscopy (SEM) synthesis techniques to correlate observed morphological changes to electrical resistance. A finite-element simulation was used to simulate CNT forest synthesis and the evolution of electrical resistance in a configuration like that used experimentally. The simulation considers the contribution of CNT electrical resistance, CNT-CNT junction resistance, and CNT-electrode contact resistance. Simulation results indicate that an increased number of CNT-CNT junctions with time have a diminishing effect on increasing electrical conductance. Experimentally observed increases in electrical resistance are attributed to increasing CNT delamination from the electrical contacts.
In-Situ Scanning Electron Microscope Chemical Vapor Deposition as a Platform for Nanomanufacturing Insights
While the physical properties of carbon nanotubes (CNTs) are often superior to conventional engineering materials, their widespread adoption into many applications is limited by scaling the properties of individual CNTs to macroscale CNT assemblies known as CNT forests. The self-assembly mechanics of CNT forests that determine their morphology and ensemble properties remain poorly understood. Few experimental techniques exist to characterize and observe the growth and self-assembly processes in situ. Here we introduce the use of in-situ scanning electron microscope (SEM) synthesis based on chemical vapor deposition (CVD) processing. In this preliminary report, we share best practices for in-situ SEM CVD processing and initial CNT forest synthesis results. Image analysis techniques are developed to identify and track the movement of catalyst nanoparticles during synthesis conditions. Finally, a perspective is provided in which in-situ SEM observations represent one component of a larger system in which numerical simulation, machine learning, and digital control of experiments reduces the role of humans and human error in the exploration of CNT forest process-structure-property relationships.
more »
« less
- PAR ID:
- 10334069
- Date Published:
- Journal Name:
- ASME 2021 International Mechanical Engineering Congress and Exposition
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Understanding and controlling the growth of vertically aligned carbon nanotube (VACNT) forests by chemical vapor deposition (CVD) is essential for unlocking their potential as candidate materials for next generation energy and mass transport devices. These advances in CNT manufacturing require developing in situ characterization techniques capable of interrogating how CNTs grow, interact, and self-assemble. Here we present a technique for real-time monitoring of VACNT forest height kinetics applied to a unique custom designed rapid thermal processing (RTP) reactor for CVD of VACNTs. While the integration of multiple infrared heating lamps enables creating designed spatiotemporal temperature profiles inside the reactor, they pose challenges for in situ measurements. Hence, our approach relies on contrast-adjusted videography and image processing, combined with calibration using 3D optical microscopy with large depth-of-field. Our work enables reliably measuring VACNT growth rates and catalytic lifetimes, which are not possible to measure using ex situ methods.more » « less
-
For the scalable production of commercial products based on vertically aligned carbon nanotubes (VACNTs), referred to as CNT forests, key manufacturing challenges must be overcome. In this work, we describe some of the main challenges currently facing CNT forest manufacturing, along with how we address these challenges with our custom-built rapid thermal processing chemical vapor deposition (CVD) reactor. First, the complexity of multistep processes and reaction pathways involved in CNT growth by CVD limits the control on CNT population growth dynamics. Importantly, gas-phase decomposition of hydrocarbons, formation of catalyst particles, and catalytic growth of CNTs are typically coupled. Here, we demonstrated a decoupled recipe with independent control of each step. Second, significant run-to-run variations plague CNT growth by CVD. To improve growth consistency, we designed various measures to remove oxygen-containing molecules from the reactor, including air baking between runs, dynamic pumping down cycles, and low-pressure baking before growth. Third, real-time measurements during growth are needed for process monitoring. We implement in situ height kinetics via videography. The combination of approaches presented here has the potential to transform lab-scale CNT synthesis to robust manufacturing processes.more » « less
-
For the scalable production of commercial products based on vertically aligned carbon nanotubes (VACNTs), referred to as CNT forests, key manufacturing challenges must be overcome. In this work, we describe some of the main challenges currently facing CNT forest manufacturing, along with how we address these challenges with our custom-built rapid thermal processing chemical vapor deposition (CVD) reactor. First, the complexity of multistep processes and reaction pathways involved in CNT growth by CVD limits the control on CNT population growth dynamics. Importantly, gas-phase decomposition of hydrocarbons, formation of catalyst particles, and catalytic growth of CNTs are typically coupled. Here, we demonstrated a decoupled recipe with independent control of each step. Second, significant run-to-run variations plague CNT growth by CVD. To improve growth consistency, we designed various measures to remove oxygen-containing molecules from the reactor, including air baking between runs, dynamic pumping down cycles, and low-pressure baking before growth. Third, real-time measurements during growth are needed for process monitoring. We implement in situ height kinetics via videography. The combination of approaches presented here has the potential to transform lab-scale CNT synthesis to robust manufacturing processes.more » « less
-
A time-resolved two-dimensional finite element simulation is developed to model the forces generated during the self-assembly of actively growing CNT populations with distributed properties and growth characteristics. CNTs are simulated as interconnected frame elements that undergo the base growth mechanism. Mechanical equilibrium at each computational node is determined at each time step using the Updated Lagrangian method. Emphasis is placed on the transmission of force to the growth substrate, where catalyst particles reside. The simulated CNT forest structural morphology is similar to that of physical CNT forests, and results indicate that stresses on the order of GPa are transmitted to catalyst particles. The force transmitted to a given catalyst particle is correlated to the rate at which the CNT grows relative to the population averaged growth rate. The effect of diameter-dependent CNT growth rates and the persistence of vdW bonds are also examined relative to the forces generated during forest self-assembly. Results from this study may be applied to the study of CNT forest self-assembly, resultant ensemble forest properties, and force-modulated CNT growth kinetics.more » « less