skip to main content


Title: Inferring the concentration of dark matter subhaloes perturbing strongly lensed images
ABSTRACT We demonstrate that the perturbations of strongly lensed images by low-mass dark matter subhaloes are significantly impacted by the concentration of the perturbing subhalo. For subhalo concentrations expected in Lambda cold dark matter (ΛCDM), significant constraints on the concentration can be obtained at Hubble Space Telescope (HST) resolution for subhaloes with masses larger than about $10^{10}\, {\rm M}_\odot$. Constraints are also possible for lower mass subhaloes, if their concentrations are higher than the expected scatter in CDM. We also find that the concentration of lower mass perturbers down to $\sim 10^8\, {\rm M}_\odot$ can be well constrained with a resolution of ∼0.01 arcsec, which is achievable with long-baseline interferometry. Subhalo concentration also plays a critical role in the detectability of a perturbation, such that only high-concentration perturbers with mass $\lesssim 10^9\, {\rm M}_\odot$ are likely to be detected at HST resolution. If scatter in the ΛCDM mass–concentration relation is not accounted for during lens modelling, the inferred subhalo mass can be biased by up to a factor of 3 (6) for subhaloes of mass $10^9 \, {\rm M}_\odot \,(10^{10} \, {\rm M}_\odot$); this bias can be eliminated if one varies both mass and concentration during lens fitting. Alternatively, one may robustly infer the projected mass within the subhalo’s perturbation radius, defined by its distance to the critical curve of the lens being perturbed. With a sufficient number of detections, these strategies will make it possible to constrain the halo mass–concentration relation at low masses in addition to the mass function, offering a probe of dark matter physics as well as the small-scale primordial power spectrum.  more » « less
Award ID(s):
1831412 1915005
PAR ID:
10334137
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
507
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
1202 to 1215
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    A variety of observational campaigns seek to test dark matter models by measuring dark matter subhaloes at low masses. Despite their predicted lack of stars, these subhaloes may be detectable through gravitational lensing or via their gravitational perturbations on stellar streams. To set measurable expectations for subhalo populations within Lambda cold dark matter, we examine 11 Milky Way (MW)-mass haloes from the FIRE-2 baryonic simulations, quantifying the counts and orbital fluxes for subhaloes with properties relevant to stellar stream interactions: masses down to $10^{6}\, \text{M}_\odot$, distances ≲50 kpc of the galactic centre, across z = 0 − 1 (tlookback = 0–8 Gyr). We provide fits to our results and their dependence on subhalo mass, distance, and lookback time, for use in (semi)analytical models. A typical MW-mass halo contains ≈16 subhaloes $\gt 10^{7}\, \text{M}_\odot$ (≈1 subhalo $\gt 10^{8}\, \text{M}_\odot$) within 50 kpc at z ≈ 0. We compare our results with dark matter-only versions of the same simulations: because they lack a central galaxy potential, they overpredict subhalo counts by 2–10×, more so at smaller distances. Subhalo counts around a given MW-mass galaxy declined over time, being ≈10× higher at z = 1 than at z ≈ 0. Subhaloes have nearly isotropic orbital velocity distributions at z ≈ 0. Across our simulations, we also identified 4 analogues of Large Magellanic Cloud satellite passages; these analogues enhance subhalo counts by 1.4–2.1 times, significantly increasing the expected subhalo population around the MW today. Our results imply an interaction rate of ∼5 per Gyr for a stream like GD-1, sufficient to make subhalo–stream interactions a promising method of measuring dark subhaloes.

     
    more » « less
  2. ABSTRACT The free-streaming length of dark matter depends on fundamental dark matter physics, and determines the abundance and concentration of dark matter haloes on sub-galactic scales. Using the image positions and flux ratios from eight quadruply imaged quasars, we constrain the free-streaming length of dark matter and the amplitude of the subhalo mass function (SHMF). We model both main deflector subhaloes and haloes along the line of sight, and account for warm dark matter free-streaming effects on the mass function and mass–concentration relation. By calibrating the scaling of the SHMF with host halo mass and redshift using a suite of simulated haloes, we infer a global normalization for the SHMF. We account for finite-size background sources, and marginalize over the mass profile of the main deflector. Parametrizing dark matter free-streaming through the half-mode mass mhm, we constrain the thermal relic particle mass mDM corresponding to mhm. At $95 \, {\rm per\, cent}$ CI: mhm < 107.8 M⊙ ($m_{\rm {DM}} \gt 5.2 \ \rm {keV}$). We disfavour $m_{\rm {DM}} = 4.0 \,\rm {keV}$ and $m_{\rm {DM}} = 3.0 \,\rm {keV}$ with likelihood ratios of 7:1 and 30:1, respectively, relative to the peak of the posterior distribution. Assuming cold dark matter, we constrain the projected mass in substructure between 106 and 109 M⊙ near lensed images. At $68 \, {\rm per\, cent}$ CI, we infer $2.0{-}6.1 \times 10^{7}\, {{\rm M}_{\odot }}\,\rm {kpc^{-2}}$, corresponding to mean projected mass fraction $\bar{f}_{\rm {sub}} = 0.035_{-0.017}^{+0.021}$. At $95 \, {\rm per\, cent}$ CI, we obtain a lower bound on the projected mass of $0.6 \times 10^{7} \,{{\rm M}_{\odot }}\,\rm {kpc^{-2}}$, corresponding to $\bar{f}_{\rm {sub}} \gt 0.005$. These results agree with the predictions of cold dark matter. 
    more » « less
  3. ABSTRACT Self-interacting dark matter (SIDM) cosmologies admit an enormous diversity of dark matter (DM) halo density profiles, from low-density cores to high-density core-collapsed cusps. The possibility of the growth of high central density in low-mass haloes, accelerated if haloes are subhaloes of larger systems, has intriguing consequences for small-halo searches with substructure lensing. However, following the evolution of ${\lesssim}10^8 \, \mathrm{M}_\odot$ subhaloes in lens-mass systems (${\sim}10^{13}\, \mathrm{M}_\odot$) is computationally expensive with traditional N-body simulations. In this work, we develop a new hybrid semi-analytical + N-body method to study the evolution of SIDM subhaloes with high fidelity, from core formation to core-collapse, in staged simulations. Our method works best for small subhaloes (≲1/1000 host mass), for which the error caused by dynamical friction is minimal. We are able to capture the evaporation of subhalo particles by interactions with host halo particles, an effect that has not yet been fully explored in the context of subhalo core-collapse. We find three main processes drive subhalo evolution: subhalo internal heat outflow, host-subhalo evaporation, and tidal effects. The subhalo central density grows only when the heat outflow outweighs the energy gain from evaporation and tidal heating. Thus, evaporation delays or even disrupts subhalo core-collapse. We map out the parameter space for subhaloes to core-collapse, finding that it is nearly impossible to drive core-collapse in subhaloes in SIDM models with constant cross-sections. Any discovery of ultracompact dark substructures with future substructure lensing observations favours additional degrees of freedom, such as velocity-dependence, in the cross-section. 
    more » « less
  4. ABSTRACT

    Galaxy sizes correlate closely with the sizes of their parent dark matter haloes, suggesting a link between halo formation and galaxy growth. However, the precise nature of this relation and its scatter remains to be understood fully, especially for low-mass galaxies. We analyse the galaxy–halo size relation (GHSR) for low-mass ($M_\star \sim 10^{7-9}\, {\rm M}_\odot$) central galaxies over the past 12.5 billion years with the help of cosmological volume simulations (FIREbox) from the Feedback in Realistic Environments (FIRE) project. We find a nearly linear relationship between the half-stellar mass galaxy size R1/2 and the parent dark matter halo virial radius Rvir. This relation evolves only weakly since redshift z = 5: $R_{1/2}\, [{\rm kpc}] = (0.053\pm 0.002)(R_{\rm vir}/35\, {\rm kpc})^{0.934\pm 0.054}$, with a nearly constant scatter $\langle \sigma \rangle = 0.084\, [{\rm dex}]$. While this ratio is similar to what is expected from models where galaxy disc sizes are set by halo angular momentum, the low-mass galaxies in our sample are not angular momentum supported, with stellar rotational to circular velocity ratios vrot/vcirc ∼ 0.15. Introducing redshift as another parameter to the GHSR does not decrease the scatter. Furthermore, this scatter does not correlate with any of the halo properties we investigate – including spin and concentration – suggesting that baryonic processes and feedback physics are instead critical in setting the scatter in the GHSR. Given the relatively small scatter and the weak dependence of the GHSR on redshift and halo properties for these low-mass central galaxies, we propose using galaxy sizes as an independent method from stellar masses to infer halo masses.

     
    more » « less
  5. ABSTRACT

    Small-scale dark matter structures lighter than a billion solar masses are an important probe of primordial density fluctuations and dark matter microphysics. Due to their lack of starlight emission, their only guaranteed signatures are gravitational in nature. We report on results of a search for astrometric weak lensing by compact dark matter subhaloes in the Milky Way with Gaia DR3 data. Using a matched-filter analysis to look for correlated imprints of time-domain lensing on the proper motions of background stars in the Magellanic Clouds, we exclude order-unity substructure fractions in haloes with masses Ml between 107 and $10^9 \, {\rm M}_\odot$ and sizes of one parsec or smaller. We forecast that a similar approach based on proper accelerations across the entire sky with data from Gaia DR4 may be sensitive to substructure fractions of fl ≳ 10−3 in the much lower mass range of $10 \, {\rm M}_\odot \lesssim M_l \lesssim 3 \times 10^3 \, {\rm M}_\odot$. We further propose an analogous technique for stacked star–star lensing events in the regime of large impact parameters. Our first implementation is not yet sufficiently sensitive but serves as a useful diagnostic and calibration tool; future data releases should enable average stellar mass measurements using this stacking method.1

     
    more » « less