Ocean acidification, the ongoing decline of surface ocean pH and [CO32-] due to absorption of surplus atmospheric CO2, has far-reaching consequences for marine biota, especially calcifiers. Among these are teleost fishes, which internally calcify otoliths, critical elements of the inner ear and vestibular system. There is evidence in the literature that ocean acidification increases otolith size and alters shape, perhaps impacting otic mechanics and thus sensory perception. However, existing analyses of otolith morphological responses to ocean acidification are limited to 2-dimensional morphometrics and shape analysis. Here, we reared larval Clark’s anemonefish, Amphiprion clarkii (Bennett, 1830), in various seawater pH treatments analogous to future ocean scenarios in a 3x-replicated experimental design. Upon settlement, we removed all otoliths from each individual fish and analyzed them for treatment effects on morphometrics including area, perimeter, and circularity; further, we used scanning electron microscopy to screen otoliths visually for evidence of treatment effects on lateral development, surface roughness, and vaterite replacement. Our results corroborate those of other experiments with other taxa that observed otolith growth with elevated pCO2, and provide evidence that lateral development and surface roughness increased as well; we observed at least one of these effects in all otolith types. Finally, we review previous work investigating ocean acidification impacts on otolith morphology and hypotheses concerning function, placing our observations in context. These impacts may have consequences teleost fitness in the near-future ocean 
                        more » 
                        « less   
                    
                            
                            Warming, not CO2-acidified seawater, alters otolith development of juvenile Antarctic emerald rockcod (Trematomus bernacchii)
                        
                    
    
            Abstract The combustion of fossil fuels is currently causing rapid rates of ocean warming and acidification worldwide. Projected changes in these parameters have been repeatedly observed to stress the physiological limits and plasticity of many marine species from the molecular to organismal levels. High latitude oceans are among the fastest changing ecosystems; therefore, polar species are projected to be some of the most vulnerable to climate change. Antarctic species are particularly sensitive to environmental change, having evolved for millions of years under stable ocean conditions. Otoliths, calcified structures found in a fish’s inner ear used to sense movement and direction, have been shown to be affected by both warming and CO 2 -acidified seawater in temperate and tropical fishes but there is no work to date on Antarctic fishes. In this study, juvenile emerald rockcod ( Trematomus bernacchii ) were exposed to projected seawater warming and CO 2 -acidification for the year 2100 over 28 days. Sagittal otoliths were analyzed for changes in area, perimeter, length, width and shape. We found ocean warming increased the growth rate of otoliths, while CO 2 -acidified seawater and the interaction of warming and acidification did not have an effect on otolith development. Elevated temperature also altered the shape of otoliths. If otolith development is altered under future warming scenarios, sensory functions such as hearing, orientation, and movement may potentially be impaired. Changes in these basic somatic abilities could have broad implications for the general capabilities and ecology of early life stages of Antarctic fishes. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1744999
- PAR ID:
- 10334309
- Date Published:
- Journal Name:
- Polar Biology
- Volume:
- 44
- Issue:
- 9
- ISSN:
- 0722-4060
- Page Range / eLocation ID:
- 1917 to 1923
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Ocean acidification, the ongoing decline of surface ocean pH and [CO$${}_{3}^{2-}$$] due to absorption of surplus atmospheric CO 2 , has far-reaching consequences for marine biota, especially calcifiers. Among these are teleost fishes, which internally calcify otoliths, critical elements of the inner ear and vestibular system. There is evidence in the literature that ocean acidification increases otolith size and alters shape, perhaps impacting otic mechanics and thus sensory perception. Here, larval Clark’s anemonefish, Amphiprion clarkii (Bennett, 1830), were reared in various seawater pCO 2 /pH treatments analogous to future ocean scenarios. At the onset of metamorphosis, all otoliths were removed from each individual fish and analyzed for treatment effects on morphometrics including area, perimeter, and circularity; scanning electron microscopy was used to screen for evidence of treatment effects on lateral development, surface roughness, and vaterite replacement. The results corroborate those of other experiments with other taxa that observed otolith growth with elevated pCO 2 , and provide evidence that lateral development and surface roughness increased as well. Both sagittae exhibited increasing area, perimeter, lateral development, and roughness; left lapilli exhibited increasing area and perimeter while right lapilli exhibited increasing lateral development and roughness; and left asterisci exhibited increasing perimeter, roughness, and ellipticity with increasing pCO 2 . Right lapilli and left asterisci were only impacted by the most extreme pCO 2 treatment, suggesting they are resilient to any conditions short of aragonite undersaturation, while all other impacted otoliths responded to lower concentrations. Finally, fish settlement competency at 10 dph was dramatically reduced, and fish standard length marginally reduced with increasing pCO 2 . Increasing abnormality and asymmetry of otoliths may impact inner ear function by altering otolith-maculae interactions.more » « less
- 
            Abstract Rising ocean temperatures pose significant threats to marine ectotherms. Sensitivity to temperature change varies across life stages, with embryos often being less tolerant to thermal perturbation than adults. Antarctic notothenioid fishes evolved to occupy a narrow, cold thermal regime (−2 to +2°C) as the high-latitude Southern Ocean (SO) cooled to its present icy temperatures, and they are particularly vulnerable to small temperature changes, which makes them ideal sentinel species for assessing climate change impacts. Here, we detail how predicted warming of the SO may affect embryonic development in the Antarctic bullhead notothen,Notothenia coriiceps. Experimental embryos were incubated at +4°C, a temperature projected for the high-latitude SO within the next 100–200 years under high emission climate models, whereas control embryos were incubated at present-day ambient temperature, ∼0°C. Elevated temperature caused a high incidence of embryonic morphological abnormalities, including body axis kinking/curvature and reduced body size. Experimental embryos also developed more rapidly, such that they hatched 68 days earlier than controls (87 vs. 155 days post-fertilization). Accelerated development disrupted the evolved timing of seasonal hatching, shifting larval emergence into the polar winter when food availability is scarce. Transcriptomic analyses revealed molecular signatures of hypoxia and disrupted protein-folding in near-hatching embryos, indicative of severe cellular stress. Predictive modeling suggested that temperature-induced developmental disruptions would narrow seasonal reproductive windows, thereby threatening population viability under future climate scenarios. Together, our findings underscore the vulnerability of Antarctic fish embryos to higher water temperature and highlight the urgent need to understand the consequences of disruption of this important trophic component on ecosystem stability in the SO. Significance StatementAntarctic fishes evolved cold-adapted phenotypes suited to the stable thermal conditions of the Southern Ocean, yet are threatened by rising temperatures. The impact of rising temperatures on early life stages in Antarctic fishes is not well understood; our findings show that projected warming may induce premature hatching, developmental abnormalities, and molecular stress responses in embryos, potentially reducing recruitment and leading to population instability and trophic-level ecosystem disruptions. These results underscore the urgency of assessing climate-driven vulnerabilities across life stages of Antarctic marine organisms to refine population projections and enhance conservation strategies amid ongoing environmental change.more » « less
- 
            Understanding how humans have altered coral reef food webs remains challenging due to the absence of prehistoric baselines. Here, we use fish remains preserved in fossil and archaeological deposits from Panamá and the Dominican Republic to explore how Caribbean reef fish mortality patterns have changed over millennia. By quantifying accumulation rates of shark dermal denticles (scales) and bony fish otoliths (ear stones) in reef sediments, we assess relative fish abundance, while otolith size serves as a proxy for body size at death. Comparisons of these death assemblages suggest a 75% decline in shark-derived material and a 22% reduction in the sizes of human-targeted fishes—consistent with historical exploitation. This evidence of decline in large-bodied, higher trophic level fish remains coincided with a doubling in prey fish otolith accumulation and a 17% increase in their reconstructed body sizes. These patterns in time-averaged death assemblages align with effects of release from predation, documenting an often assumed (but rarely shown) cascading effect. In contrast, otoliths of predator-sheltered cryptobenthic fishes showed no change in either accumulation or size, suggesting that ‘‘bottom–up”environmental factors were not responsible for the observed changes. Together, these data indicate that pre-exploitation predator communities strongly controlled exposed prey fishes, but this “top–down” effect diminishes rapidly toward the food chain base, especially in predator-resistant groups. Understanding trophic cascades on Caribbean reefs requires studying systems before predator depletion.more » « less
- 
            Fish diversity and ecology in the ocean’s mesopelagic zone are understudied compared to other marine regions despite growing interest in harvesting these potential resources. Otoliths can provide a wealth of taxonomic and life history information about fish, which can help fill these knowledge gaps; however, there has been relatively little research to date on the otoliths of mesopelagic species. Here, a species-specific image library was assembled of sagittal otoliths from 70 mesopelagic fishes belonging to 29 families collected in the western North Atlantic Ocean. Images of adult sagittal otoliths from 12 species were documented and photographed for the first time. The fish were identified to species with a combination of morphological characters and DNA barcoding. Regressions between otolith size and fish length are presented for the six species with the largest sample sizes in this study. This otolith image library, coupled with otolith-length and width to fish-length relationships, can be used for prey identification and back-calculation of fish size, making it a valuable tool for studies relating to food webs in the important yet poorly understood mesopelagic zone. In addition, the 44 fish barcodes generated in this study highlight the benefit of using an integrative taxonomic approach to studies of this nature, as well as add to existing public databases that enable cryptic species and metabarcoding analyses of mesopelagic species.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    