skip to main content


Title: Receptor Induced Doping of Conjugated Polymer Transistors: A Strategy for Selective and Ultrasensitive Phosphate Detection in Complex Aqueous Environments
Abstract

Phosphate oxyanions play central roles in biological, agricultural, industrial, and ecological processes. Their high hydration energies and dynamic properties present a number of critical challenges limiting the development of sensing technologies that are cost‐effective, selective, sensitive, field‐deployable, and which operate in real‐time within complex aqueous environments. Here, a strategy that enables the fabrication of an electrolyte‐gated organic field‐effect transistor (EGOFET) is demonstrated, which overcomes these challenges and enables sensitive phosphate quantification in challenging aqueous environments such as seawater. The device channel comprises a composite layer incorporating a diketopyrrolopyrrole‐based semiconducting polymer and a π‐conjugated penta‐t‐butylpentacyanopentabenzo[25]annulene “cyanostar” receptor capable of oxyanion recognition and embodies a new concept, where the receptor synergistically enhances the stability and transport characteristics via doping. Upon exposure of the device to phosphate, a current reduction is observed, consistent with dedoping upon analyte binding. Sensing studies demonstrate ultrasensitive and selective phosphate detection within remarkably low limits of detection of 178 × 10−12m(17.3 parts per trillion) in buffered samples and stable operation in seawater. This receptor‐based doping strategy, in conjunction with the versatility of EGOFETs for miniaturization and monolithic integration, enables manifold opportunities in diagnostics, healthcare, and environmental monitoring.

 
more » « less
Award ID(s):
1632825 2105848
NSF-PAR ID:
10446387
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Electronic Materials
Volume:
8
Issue:
7
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Metal cations are potent environmental pollutants that negatively impact human health and the environment. Despite advancements in sensor design, the simultaneous detection and discrimination of multiple heavy metals at sub‐nanomolar concentrations in complex analytical matrices remain a major technological challenge. Here, the design, synthesis, and analytical performance of three highly emissive conjugated polyelectrolytes (CPEs) functionalized with strong iminodiacetate and iminodipropionate metal chelates that operate in challenging environmental samples such as seawater are demonstrated. When coupled with array‐based sensing methods, these polymeric sensors discriminate among nine divalent metal cations (CuII, CoII, NiII, MnII, FeII, ZnII, CdII, HgII, and PbII). The unusually high and robust luminescence of these CPEs enables unprecedented sensitivity at picomolar concentrations in water. Unlike previous array‐based sensors for heavy metals using CPEs, the incorporation of distinct π‐spacer units within the polymer backbone affords more pronounced differences in each polymer's spectroscopic behavior upon interaction with each metal, ultimately producing better analytical information and improved differentiation. To demonstrate the environmental and biological utility, a simple two‐component sensing array is showcased that can differentiate nine metal cation species down to 500 × 10−12 min aqueous media and to 100 × 10−9 min seawater samples collected from the Gulf of Mexico.

     
    more » « less
  2. Abstract

    Low‐cost biosensors that can rapidly and widely monitor plant nutritional levels will be critical for better understanding plant health and improving precision agriculture decision making. In this work, fully printed ion‐selective organic electrochemical transistors (OECTs) that can detect macronutrient concentrations in whole plant sap are described. Potassium, the most concentrated cation in the majority of plants, is selected as the target analyte as it plays a critical role in plant growth and development. The ion sensors demonstrate high current (170 µA dec−1) and voltage (99 mV dec−1) sensitivity, and a low limit of detection (10 × 10−6 m). These OECT biosensors can be used to determine potassium concentration in raw sap and sap‐like aqueous environments demonstrating a log‐linear response within the expected physiological range of cations in plants. The performance of these printed devices enables their use in high‐throughput plant health monitoring in agricultural and ecological applications.

     
    more » « less
  3. Abstract

    The presence of electron rich compounds such as amines added to the fluorescent methoxybinaphthalene boronic acid results in a dramatic increase in affinity of diols to the aryl boronic acid as well as in the augmented fluorescence response. This is likely the result of the change in boron geometry upon coordination with electron donor which facilitate the diols binding. Here, we demonstrate the role of amino alcohol additive in binding of saccharides by boronic acid‐based fluorescent sensor. We show that this strategy allows a poorly responsive sensor to become a highly sensitive probe for the detection of sugars, which could be used for classification of saccharides as well as for quantitative analysis in DMSO‐water solutions. The simple binaphthalene boronic acid sensor was particularly sensitive tod‐fructose (Ka=2.08×106), which allowed for identification of commercial sweetened beverages based on theird‐fructose content. The same method was successfully used for the quantitative analysis ofd‐fructose in soft beverages.

     
    more » « less
  4. Abstract

    We take a broad look at the problem of identifying the magnetic solar causes of space weather. With the lackluster performance of extrapolations based upon magnetic field measurements in the photosphere, we identify a region in the near-UV (NUV) part of the spectrum as optimal for studying the development of magnetic free energy over active regions. Using data from SORCE, the Hubble Space Telescope, and SKYLAB, along with 1D computations of the NUV spectrum and numerical experiments based on the MURaM radiation–magnetohydrodynamic and HanleRT radiative transfer codes, we address multiple challenges. These challenges are best met through a combination of NUV lines of bright Mgii, and lines of Feiiand Fei(mostly within the 4s–4ptransition array) which form in the chromosphere up to 2 × 104K. Both Hanle and Zeeman effects can in principle be used to derive vector magnetic fields. However, for any given spectral line theτ= 1 surfaces are generally geometrically corrugated owing to fine structure such as fibrils and spicules. By using multiple spectral lines spanning different optical depths, magnetic fields across nearly horizontal surfaces can be inferred in regions of low plasmaβ, from which free energies, magnetic topology, and other quantities can be derived. Based upon the recently reported successful sub-orbital space measurements of magnetic fields with the CLASP2 instrument, we argue that a modest space-borne telescope will be able to make significant advances in the attempts to predict solar eruptions. Difficulties associated with blended lines are shown to be minor in an Appendix.

     
    more » « less
  5. Abstract

    A novel surface modification approach is taken to cyanide‐sensing by using functionalized cellulose surface that is chemically modified by immobilizing cobalt(II)‐bis‐terpyridine complex on it. The cobalt(II)‐bis‐tpy complex can exhibit selective “naked eye” colorimetric detection of micromolar level cyanide in aqueous solution, where the visible red‐orange color of cobalt(II)‐bis‐tpy complex solution (aqueous) disappears in the presence of cyanide ions. In order to make the sensor more proficient and easy to use, these cobalt(II)‐bis‐tpy molecules are chemically grafted on the surface of microcrystalline cellulose and cellulose paper, which turns the color of functionalized cellulose orange‐red. Both of these colored cellulose powder and paper exhibit color loss in 10−6maqueous solution of potassium cyanide. This functionalized hybrid inorganic–organic paper offers an easy “dip and detect” cyanide sensing.

     
    more » « less