skip to main content


Title: Small‐Scale Intraslab Heterogeneity Weakens Into the Mantle Transition Zone
Abstract

Small‐scale intraslab heterogeneity is well documented seismically in multiple subduction zones, but its nature remains elusive. Previous efforts have been mostly focusing on the scattering strength at intermediate depth (<350 km), without constraining its evolution as a function of depth. Here, we illustrate that the inter‐source interferometry method, which turns deep earthquakes into virtual receivers, can resolve small‐scale intraslab heterogeneity in the mantle transition zone. The interferometric waveform observations in the Japan subduction zone require weak scattering (<1.0%) within the slab below 410 km. Combining with previous studies that suggest high heterogeneity level (∼2.5%) at intermediate depth, we conclude that the small‐scale intraslab heterogeneity weakens as slabs subduct. We suggest that the heterogeneities are caused by intraslab hydrous minerals, and the decrease in their scattering strength with depth reveals processes associated with dehydration of subducting slabs.

 
more » « less
Award ID(s):
2009935
NSF-PAR ID:
10377242
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
23
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Earth's long‐ and intermediate‐wavelength geoid anomalies are surface expressions of mantle convection and are sensitive to mantle viscosity. While previous studies of the geoid provide important constraints on the mantle radial viscosity variations, the mantle buoyancy in these studies, as derived from either seismic tomography or slab density models, may suffer significant uncertainties. In this study, we formulate 3‐D spherical mantle convection models with plate motion history since the Cretaceous that generate dynamically self‐consistent mantle thermal and buoyancy structures, and for the first time, use the dynamically generated slab structures and the observed geoid to place important constraints on the mantle viscosity. We found that non‐uniform weak plate margins and strong plate interiors are critical in reproducing the observed geoid and surface plate motion, especially the net lithosphere rotation (i.e., degree‐1 toroidal plate motion). In the best‐fit model, which leads to correlation of 0.61 between the modeled and observed geoid at degrees 4–12, the lower mantle viscosity is ∼1.3–2.5 × 1022 Pa⋅s and is ∼30 and ∼600–1,000 times higher than that in the transition zone and asthenosphere, respectively. Slab structures and the geoid are also strongly affected by slab strength, and the observations prefer moderately strong slabs that are ∼10–100 times stronger than the ambient mantle. Finally, a thin weak layer below the 670‐km phase change on a regional scale only in subduction zones produces stagnant slabs in the mantle transition zone as effectively as a weak layer on a global scale.

     
    more » « less
  2. Abstract

    The distribution of intermediate‐depth and deep intraslab earthquakes with respect to subducting slabs offers a unique insight into seismogenesis at high pressures and temperatures that should inhibit brittle failure. This study constrains the surface of the subducting Pacific Plate beneath Japan at depths between 100 and 380 km based on a previous continental‐scale adjoint tomography model. Earthquake distributions relative to the slab surface reveal double seismic zones located within the top 60 km of the Pacific Plate. Thermal modeling suggests that the lower‐plane seismicity corresponds to temperatures between 400 and 900 °C. The seismogenic pressure and temperature conditions correlate approximately with the conditions of dehydration reactions of several hydrous minerals, that is, antigorite (serpentine) and chlorite at depths between 100 and 200 km and phase A at greater depths between 200 and 380 km. These correlations indicate that at these depths water released from dehydration processes may facilitate triggering slab mantle earthquakes.

     
    more » « less
  3. Abstract

    Seamounts are found at many subduction zones and act as seafloor heterogeneities that affect slip behavior on megathrusts. At the Hikurangi subduction zone offshore the North Island, New Zealand, seamounts have been identified on the incoming Pacific plate and below the accretionary prism, but there is little concrete evidence for seamounts subducted beyond the present‐day coastline. Using a high‐resolution, adjoint tomography‐derived velocity model of the North Island, we identify two high‐velocity anomalies below the East Coast and an intraslab low‐velocity zone up‐dip of one of these anomalies. We interpret the high‐velocity anomalies as previously unidentified, deeply subducted seamounts, and the low‐velocity zone as fluid in the subducting slab. The seamounts are inferred to be 10–30 km wide and on the plate interface at 12–15 km depth. Resolution analysis using point spread functions confirms that these are well‐resolved features. The locations of the two seamounts coincide with bathymetric features whose geometries are consistent with those predicted from analog experiments and numerical simulations of seamount subduction. The spatial characteristics of seismicity and slow slip events near the inferred seamounts agree well with previous numerical modeling predictions of the effects of seamount subduction on megathrust stress and slip. Anomalous geophysical signatures, magnetic anomalies, and swarm seismicity have also been observed previously at one or both seamount locations. We propose that permanent fracturing of the northern Hikurangi upper plate by repeated seamount subduction may be responsible for the dichotomous slow slip behavior observed geodetically, and partly responsible for along‐strike variations in plate coupling on the Hikurangi subduction interface.

     
    more » « less
  4. Abstract

    Beneath southwestern Colombia, intermediate‐depth earthquakes in the Cauca cluster locate in the subducting Nazca plate and in two columns extending ~40‐km into the mantle wedge above the slab. To investigate the cluster, we determine focal mechanisms for 69 small‐to‐moderate‐sized (2.3 ≤ Ml ≤ 4.7) earthquakes in the cluster by fitting short‐period body wave waveforms using the cut‐and‐paste method. The focal mechanisms have various faulting types and variably oriented nodal planes. We invert the focal mechanisms of the intraslab earthquakes for the intraslab stress field but cannot fit the region with a homogeneous stress tensor. We find that the principal stress axes rotate with the slab geometry, which has a concave shape and increases in dip angle from north to south. The northern region has slab normal compression and similar‐magnitude maximum and intermediate principal stresses. The minimum stress axis is oriented ~41° counterclockwise from the downdip direction. In the steeper southern region, the intermediate stress axis orients in the downdip direction. Deviation from a typical downdip extensional stress field may result from a buoyant young slab, an eastward mantle flow push, and/or along‐strike compression from the concave shape of the slab. This stress field would allow slip along preexisting faults of various orientations, such as the trench‐perpendicular seafloor features presently observed offshore, and contribute to the apparent heterogeneity of the intraslab stress field. The mantle wedge earthquakes also have various focal mechanisms but tend to have a subvertical nodal plane that aligns with the earthquake locations.

     
    more » « less
  5. SUMMARY

    Despite progress in tomographic imaging of Earth's interior, a number of critical questions regarding the large-scale structure and dynamics of the mantle remain outstanding. One of those questions is the impact of phase-boundary undulations on global imaging of mantle heterogeneity and on geodynamic (i.e. convection-related) observables. To address this issue, we developed a joint seismic-geodynamic-mineral physical tomographic inversion procedure that incorporates lateral variations in the depths of the 410- and 660-km discontinuities. This inversion includes S-wave traveltimes, SS precursors that are sensitive to transition-zone topography, geodynamic observables/data (free-air gravity, dynamic surface topography, horizontal divergence of tectonic plates and excess core-mantle boundary ellipticity) and mineral physical constraints on thermal heterogeneity. Compared to joint tomography models that do not include data sensitivity to phase-boundary undulations in the transition zone, the inclusion of 410- and 660-km topography strongly influences the inference of volumetric anomalies in a depth interval that encompasses the transition zone and mid-mantle. It is notable that joint tomography inversions, which include constraints on transition-zone discontinuity topography by seismic and geodynamic data, yield more pronounced density anomalies associated with subduction zones and hotspots. We also find that the inclusion of 410- and 660-km topography may improve the fit to the geodynamic observables, depending on the weights applied to seismic and geodynamic data in the inversions. As a consequence, we find that the amplitude of non-thermal density anomalies required to explain the geodynamic data decreases in most of the mantle. These findings underline the sensitivity of the joint inversions to the inclusion of transition-zone complexity (e.g. phase-boundary topography) and the implications for the inferred non-thermal density anomalies in these depth regions. Finally, we underline that our inferences of 410- and 660-km topography avoid a commonly employed approximation that represents the contribution of volumetric heterogeneity to SS-wave precursor data. Our results suggest that this previously employed correction, based on a priori estimates of upper-mantle heterogeneity, might be a significant source of error in estimating the 410- and 660-km topography.

     
    more » « less