skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A novel biological treatment of hydrothermal carbonization wastewater by using Thraustochytrium striatum
Hydrothermal conversion (HC) is a promising thermochemical technology to produce biofuels and bioproducts from biomass. However, the disposal of HC aqueous product (HC-AP) is one of the biggest challenges. This research investigated a new biological method using a marine protist, Thraustochytrium striatum to treat HC-AP from hydrothermal carbonization of municipal solid waste. A full factorial experiment was carried out to examine the effects of operation conditions on HC-AP treatment regarding cell growth, cellular lipid accumulation, and removals of total organic carbon (TOC)/total nitrogen (TN)/total phosphorus (TP)/recalcitrant compounds. Among four factors, only dilution rate and nitrogen concentration had significant effects on all responses, while salinity and pH were insignificant. Under the optimum conditions, T. striatum achieved 1.27 g/L dry cell mass and 14 % cellular lipid content while removing 82 % TOC, 53 % TN, 94 % TP, and ∼89 % refractory compounds. This research offers a new biological platform for HC-AP treatment and valorization.  more » « less
Award ID(s):
2001568 2001625
PAR ID:
10334945
Author(s) / Creator(s):
Date Published:
Journal Name:
Process biochemistry
Volume:
112
ISSN:
1359-5113
Page Range / eLocation ID:
217-222
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To address some challenges of food security and sustainability of the poultry processing industry, a sequential membrane process of ultrafiltration (UF), forward osmosis (FO), and reverse osmosis (RO) is proposed to treat semi-processed poultry slaughterhouse wastewater (PSWW) and water recovery. The pretreatment of PSWW with UF removed 36.7% of chemical oxygen demand (COD), 38.9% of total phosphorous (TP), 24.7% of total solids (TS), 14.5% of total volatile solids (TVS), 27.3% of total fixed solids (TFS), and 12.1% of total nitrogen (TN). Then, the PSWW was treated with FO membrane in FO mode, pressure retarded osmosis (PRO) mode, and L-DOPA coated membrane in the PRO mode. The FO mode was optimal for PSWW treatment by achieving the highest average flux of 10.4 ± 0.2 L/m2-h and the highest pollutant removal efficiency; 100% of COD, 100% of TP, 90.5% of TS, 85.3% of TVS, 92.1% of TFS, and 37.2% of TN. The performance of the FO membrane was entirely restored by flushing the membrane with 0.1% sodium dodecyl sulfate solution. RO significantly removed COD, TS, TVS, TFS, and TP. However, TN was reduced by only 62% because of the high ammonia concentration present in the draw solution. Overall, the sequential membrane process (UF-FO-RO) showed excellent performance by providing high rejection efficiency for pollutant removal and water recovery. 
    more » « less
  2. Large-scale and rapid improvement in wastewater treatment is common practice in developing countries, yet this influence on nutrient regimes in receiving waterbodies is rarely examined at broad spatial and temporal scales. Here, we present a study linking decadal nutrient monitoring data in lakes with the corresponding estimates of five major anthropogenic nutrient discharges in their surrounding watersheds over time. Within a continuous monitoring dataset covering the period 2008 to 2017, we find that due to different rates of change in TN and TP concentrations, 24 of 46 lakes, mostly located in China’s populated regions, showed increasing TN/TP mass ratios; only 3 lakes showed a decrease. Quantitative relationships between in-lake nutrient concentrations (and their ratios) and anthropogenic nutrient discharges in the surrounding watersheds indicate that increase of lake TN/TP ratios is associated with the rapid improvement in municipal wastewater treatment. Due to the higher removal efficiency of TP compared with TN, TN/TP mass ratios in total municipal wastewater discharge have continued to increase from a median of 10.7 (95% confidence interval, 7.6 to 15.1) in 2008 to 17.7 (95% confidence interval, 13.2 to 27.2) in 2017. Improving municipal wastewater collection and treatment worldwide is an important target within the 17 sustainable development goals set by the United Nations. Given potential ecological impacts on biodiversity and ecosystem function of altered nutrient ratios in wastewater discharge, our results suggest that long-term strategies for domestic wastewater management should not merely focus on total reductions of nutrient discharges but also consider their stoichiometric balance. 
    more » « less
  3. Sediment traps were deployed to assess the mass and composition (iron, manganese, total organic carbon, and total nitrogen) of settling particulates in the water column of two drinking water reservoirs—Beaverdam Reservoir and Falling Creek Reservoir, both located in Vinton, Virginia, USA. Sediment traps were deployed at two depths in each reservoir to capture both epilimnetic and hypolimnetic (total) sediment flux. The particulates were collected from the traps approximately fortnightly from April to December from 2018 to 2022, then filtered, dried, and analyzed for either iron and manganese or total organic carbon and total nitrogen. Beaverdam and Falling Creek are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia. The sediment trap dataset consists of logs detailing the sample filtering process, the mass of dried particulates from each filter, and the raw concentration data for iron (Fe) and manganese (Mn), total organic carbon (TOC) and total nitrogen (TN). The final products are the calculated downward fluxes of solid Fe, Mn, TOC and TN during the deployment periods. 
    more » « less
  4. Abstract. Climate warming in the Arctic results in thawing permafrost and associated processes like thermokarst, especially in ice-rich permafrost regions. Since permafrost soils are one of the largest organic carbon reservoirs of the world, their thawing leads to the release of greenhouse gases due to increasing microbial activity with rising soil temperature, further exacerbating climate warming. To enhance the predictions of potential future impacts of permafrost thaw, a detailed assessment of changes in soil characteristics in response to thermokarst processes in permafrost landscapes is needed, which we investigated in this study in an Arctic coastal lowland. We analysed six sediment cores from the Arctic Coastal Plain of northern Alaska, each representing a different landscape feature along a gradient from upland to thermokarst lake and drained basin to thermokarst lagoon in various development stages. For the analysis, a multiproxy approach was used, including sedimentological (grain size, bulk density, ice content), biogeochemical (total organic carbon (TOC), TOC density (TOCvol), total nitrogen (TN), stable carbon isotopes (δ13C), TOC/TN ratio, mercury (Hg)), and lipid biomarker (n-alkanes, n-alkanols, and their ratios) parameters. We found that a semi-drained state of thermokarst lakes features the lowest OC content, and TOC and TN are generally higher in unfrozen deposits, hinting at a more intact state of organic matter. Indicated by the average chain length (ACL), δ13C, Paq, and Pwax, we found a stronger influence of aquatic organic matter (OM) in the OM composition in the soils covered by water compared to those not covered by water. Moreover, the results of the δ13C, TOC/TN ratio, and CPI indicate that the saline deposits contain stronger degraded OM than the deposits not influenced by saltwater. Additionally, we found positive correlations between the TOC and TOCvol and the Hg content in the deposits. The results indicate that thermokarst-influenced deposits tend to accumulate Hg during thawed periods and thus contain more Hg than the upland permafrost deposits that have not been impacted by lake formation. Our findings offer valuable insights into the dynamics of carbon storage and vulnerability to decomposition in coastal permafrost landscapes, reflecting the interplay of environmental factors, landform characteristics, and climate change impacts on Arctic permafrost environments. 
    more » « less
  5. Abstract Agricultural land use is typically associated with high stream nutrient concentrations and increased nutrient loading to lakes. For lakes, evidence for these associations mostly comes from studies on individual lakes or watersheds that relate concentrations of nitrogen (N) or phosphorus (P) to aggregate measures of agricultural land use, such as the proportion of land used for agriculture in a lake’s watershed. However, at macroscales (i.e., in hundreds to thousands of lakes across large spatial extents), there is high variability around such relationships and it is unclear whether considering more granular (or detailed) agricultural data, such as fertilizer application, planting of specific crops, or the extent of near‐stream cropping, would improve prediction and inform understanding of lake nutrient drivers. Furthermore, it is unclear whether lake N and P would have different relationships to such measures and whether these relationships would vary by region, since regional variation has been observed in prior studies using aggregate measures of agriculture. To address these knowledge gaps, we examined relationships between granular measures of agricultural activity and lake total phosphorus (TP) and total nitrogen (TN) concentrations in 928 lakes and their watersheds in the Northeastern and Midwest U.S. using a Bayesian hierarchical modeling approach. We found that both lake TN and TP concentrations were related to these measures of agriculture, especially near‐stream agriculture. The relationships between measures of agriculture and lake TN concentrations were more regionally variable than those for TP. Conversely, TP concentrations were more strongly related to lake‐specific measures like depth and watershed hydrology relative to TN. Our finding that lake TN and TP concentrations have different relationships with granular measures of agricultural activity has implications for the design of effective and efficient policy approaches to maintain and improve water quality. 
    more » « less