Although it is a historically understudied season, winter is now recognized as a time of biological activity and relevant to the annual cycle of north-temperate lakes. Emerging research points to a future of reduced ice cover duration and changing snow conditions that will impact aquatic ecosystems. The aim of the study was to explore how altered snow and ice conditions, and subsequent changes to under-ice light environment, might impact ecosystem dynamics in a north, temperate bog lake in northern Wisconsin, USA. This dataset resulted from a snow removal experiment that spanned the periods of ice cover on South Sparkling Bog during the winters of 2019, 2020, and 2021. During the winters 2020 and 2021, snow was removed from the surface of South Sparkling Bog using an ARGO ATV with a snow plow attached. The 2019 season served as a reference year, and snow was not removed from the lake. This dataset represents under ice zooplankton community samples (integrated tows at depths of 7 m) and some shoulder-season (open water) zooplankton community samples. Zooplankton samples were preserved in 90% ethanol and later processed to determine taxonomic classification at the species-level, density (individuals / L), and average length (mm).
more »
« less
Lake snow removal experiment zooplankton community data, under ice, 2019-2021
Although it is a historically understudied season, winter is now recognized as a time of biological activity and relevant to the annual cycle of north-temperate lakes. Emerging research points to a future of reduced ice cover duration and changing snow conditions that will impact aquatic ecosystems. The aim of the study was to explore how altered snow and ice conditions, and subsequent changes to under-ice light environment, might impact ecosystem dynamics in a north, temperate bog lake in northern Wisconsin, USA. This dataset resulted from a snow removal experiment that spanned the periods of ice cover on South Sparkling Bog during the winters of 2019, 2020, and 2021. During the winters 2020 and 2021, snow was removed from the surface of South Sparkling Bog using an ARGO ATV with a snow plow attached. The 2019 season served as a reference year, and snow was not removed from the lake. This dataset represents under ice zooplankton community samples (integrated tows at depths of 7 m) and some shoulder-season (open water) zooplankton community samples. Zooplankton samples were preserved in 90% ethanol and later processed to determine taxonomic classification at the species-level, density (individuals / L), and average length (mm).
more »
« less
- Award ID(s):
- 1856224
- PAR ID:
- 10334982
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Although it is a historically understudied season, winter is now recognized as a time of biological activity and relevant to the annual cycle of north-temperate lakes. Emerging research points to a future of reduced ice cover duration and changing snow conditions that will impact aquatic ecosystems. The aim of the study was to explore how altered snow and ice conditions, and subsequent changes to under-ice light environment, might impact ecosystem dynamics in a north, temperate bog lake in northern Wisconsin, USA. This dataset resulted from a snow removal experiment that spanned the periods of ice cover on South Sparkling Bog during the winters of 2019, 2020, and 2021. During the winters 2020 and 2021, snow was removed from the surface of South Sparkling Bog using an ARGO ATV with a snow plow attached. The 2019 season served as a reference year, and snow was not removed from the lake. This dataset represents phytoplankton community samples (pooled epilimnion and hypolimnion samples representative of 7 m water column) both under-ice and during some shoulder-season (open water) dates. Samples were collected into amber bottles and preserved with Lugol's solution before they were sent to Phycotech Inc. (St. Joseph MI, USA) for phytoplankton taxonomic identification and quantification.more » « less
-
Although it is a historically understudied season, winter is now recognized as a time of biological activity and relevant to the annual cycle of north-temperate lakes. Emerging research points to a future of reduced ice cover duration and changing snow conditions that will impact aquatic ecosystems. The aim of the study was to explore how altered snow and ice conditions, and subsequent changes to under-ice light environment, might impact ecosystem dynamics in a north, temperate bog lake in northern Wisconsin, USA. This dataset resulted from a snow removal experiment that spanned the periods of ice cover on South Sparkling Bog during the winters of 2019, 2020, and 2021. During the winters 2020 and 2021, snow was removed from the surface of South Sparkling Bog using an ARGO ATV with a snow plow attached. The 2019 season served as a reference year, and snow was not removed from the lake. This dataset represents chlorophyll, light, and high frequency buoy data collected from this project. Related datasets are: https://doi.org/10.6073/pasta/962fa57959ff9828eb6f1cbda79b82c0 https://doi.org/10.6073/pasta/f6e271634a04819e25bc7c913cd67155 https://doi.org/10.6073/pasta/9a26e819522152e878d802df76cf90d7more » « less
-
Although it is a historically understudied season, winter is now recognized as a time of biological activity and relevant to the annual cycle of north-temperate lakes. Emerging research points to a future of reduced ice cover duration and changing snow conditions that will impact aquatic ecosystems. The aim of the study was to explore how altered snow and ice conditions, and subsequent changes to under-ice light environment, might impact ecosystem dynamics in a north, temperate bog lake in northern Wisconsin, USA. This dataset resulted from a snow removal experiment that spanned the periods of ice cover on South Sparkling Bog during the winters of 2019, 2020, and 2021. During the winters 2020 and 2021, snow was removed from the surface of South Sparkling Bog using an ARGO ATV with a snow plow attached. The 2019 season served as a reference year, and snow was not removed from the lake. This dataset represents the snow depths, black and white ice thickness, and Secchi depths during the period of ice cover each winter.more » « less
-
To investigate the effect of a winter with decreased snow cover on greenhouse gas emissions, we experimentally removed snowfall from a small dystrophic lake in northern Wisconsin. As a comparative study, we were able to explore the role of light in under-ice gas dynamics and spring emissions in dimictic lakes. This dataset contains greenhouse gas and temperature/dissolved oxygen profile data collected on South Sparkling and Trout Bog during the winter of 2020 through the winter of 2021. Data were collected between 09 January 2020 and 13 April 2021 in the deep hole of both bogs. Dissolved greenhouse gas concentrations of carbon dioxide and methane were measured using the headspace equilibrium method.more » « less
An official website of the United States government
