skip to main content

This content will become publicly available on April 1, 2023

Title: Water in the crystal structure of CaSiO3 perovskite
Abstract While the water storage capacities of the upper 700 km depths of the mantle have been constrained by high-pressure experiments and diamond inclusion studies, the storage capacity of the lower mantle remains controversial. A recent high-pressure experimental study on CaSiO3 perovskite, which is the third most abundant mineral in the lower mantle, reported possible storage of H2O up to a few weight percent. However, the substitution mechanism for H in this phase remains unknown. We have conducted a series of density functional theory calculations under static-lattice conditions and high pressures to elucidate hydration mechanisms at the atomic scale. All of the possible dodecahedral (Ca2+ → 2H+) and octahedral (Si4+ → 4H+) substitution configurations for a tetragonal perovskite lattice have very small energy differences, suggesting the coexistence of multiples of H configurations in CaSiO3 perovskite at mantle pressures and temperatures. The dodecahedral substitutions decrease the bulk modulus, resulting in a smaller unit-cell volume of hydrous CaSiO3 perovskite under pressure, consistent with the experimental observations. Although the octahedral substitutions also decrease the bulk modulus, they increase the unit-cell volume at 1 bar. The H atoms substituted in the dodecahedral sites develop much less hydrogen bonding with O atoms, leading to a more » large distortion in the neighboring SiO6 octahedra. Such distortion may be responsible for the non-cubic peak splittings observed in experiments on hydrous CaSiO3 perovskite. Our calculated infrared spectra suggest that the observed broad OH modes in CaSiO3 perovskite can result from the existence of multiples of H configurations in the phase. Combined with the recent experimental results, our study suggests that CaSiO3 can be an important mineral phase to consider for the H2O storage in the lower mantle. « less
Authors:
; ;
Award ID(s):
2019565
Publication Date:
NSF-PAR ID:
10335204
Journal Name:
American Mineralogist
Volume:
107
Issue:
4
Page Range or eLocation-ID:
631 to 641
ISSN:
0003-004X
Sponsoring Org:
National Science Foundation
More Like this
  1. Phase egg, [AlSiO3(OH)], is an aluminosilicate hydrous mineral that is thermodynamically stable in lithological compositions represented by Al2O3-SiO2-H2O (ASH) ternary, i.e., a simplified ternary for the mineralogy of subducted sediments and continental crustal rocks. High-pressure and high-temperature experiments on lithological compositions resembling hydrated sedimentary layers in subducting slabs show that phase egg is stable up to pressures of 20–30 GPa, which translates to the transition zone to lower mantle depths. Thus, phase egg is a potential candidate for transporting water into the Earth’s mantle transition zone. In this study, we use first-principles simulations based on density functional theory to explore the pressure dependence of crystal structure and how it influences energetics and elasticity. Our results indicate that phase egg exhibits anomalous behavior of the pressure dependence of the elasticity at mantle transition zone depths (~15 GPa). Such anomalous behavior in the elasticity is related to changes in the hydrogen bonding O-H···O configurations, which we delineate as a transition from a low-pressure to a high-pressure structure of phase egg. Full elastic constant tensors indicate that phase egg is very anisotropic resulting in a maximum anisotropy of compressional wave velocity, AvP ≈ 30% and of shear wave velocity, AvS ≈ 17% atmore »zero pressures. Our results also indicate that the phase egg has one of the fastest bulk sound velocities (vP and vS) compared to other hydrous aluminous phases in the ASH ternary, which include topaz-OH, phase Pi, and d-AlOOH. However, the bulk sound velocity of phase egg is slower than that of stishovite. At depths corresponding to the base of mantle transition zone, phase egg decomposes to a mixture of d-AlOOH and stishovite. The changes in compressional DvP and shear DvS velocity associated with the decomposition is ~0.42% and –1.23%, respectively. Although phase egg may be limited to subducted sediments, it could hold several weight percentages of water along a normal mantle geotherm.« less
  2. Water (H2O) as one of the most abundant fluids present in Earth plays crucial role in the generation and transport of magmas in the interior. Though hydrous silicate melts have been studied extensively, the experimental data are confined to relatively low pressures and the computational results are still rare. Moreover, these studies imply large differences in the way water influences the physical properties of silicate magmas, such as density and electrical conductivity. Here, we investigate the equation of state, speciation, and transport properties of water dissolved in Mg1-xFexSiO3 and Mg2(1-x)Fe2xSiO4 melts (for x = 0 and 0.25) as well as in its bulk (pure) fluid state over the entire mantle pressure regime at 2000 to 4000 K using first-principles molecular dynamics. The simulation results allow us to constrain the partial molar volume of the water component in melts along with the molar volume of pure water. The predicted volume of silicate melt+water solution is negative at low pressures and becomes zero above 15 GPa. Consequently, the hydrous component tends to lower the melt density to similar extent over much of the mantle pressure regime irrespective of composition. Our results also show that hydrogen diffuses fast in silicate melts and enhancesmore »the melt electrical conductivity in a way that differs from electrical conduction in the bulk water. The speciation of the water component varies considerably from the bulk water structure as well. Water is dissolved in melts mostly as hydroxyls at low pressure and as -O-H-O-, -O-H-O-H- and other extended species with increasing pressure. On the other hand, the pure water behaves as a molecular fluid below 15 GPa, gradually becoming a dissociated fluid with further compression. On the basis of modeled density and conductivity results, we suggest that partial melts containing a few percent of water may be gravitationally trapped both above and below the upper mantle-transition region. Moreover, such hydrous melts can give rise to detectable electrical conductance by means of electromagnetic sounding observations.« less
  3. null (Ed.)
    Garnet is an important mineral phase in the upper mantle as it is both a key component in bulk mantle rocks, and a primary phase at high-pressure within subducted basalt. Here, we focus on the strength of garnet and the texture that develops within garnet during accommodation of differential deformational strain. We use X-ray diffraction in a radial geometry to analyze texture development in situ in three garnet compositions under pressure at 300 K: a natural garnet (Prp60Alm37) to 30 GPa, and two synthetic majorite-bearing compositions (Prp59Maj41 and Prp42Maj58) to 44 GPa. All three garnets develop a modest (100) texture at elevated pressure under axial compression. Elasto-viscoplastic self-consistent (EVPSC) modeling suggests that two slip systems are active in the three garnet compositions at all pressures studied: {110}<1-21 11> and {001}<110>. We determine a flow strength of ~5 GPa at pressures between 10 to 15 GPa for all three garnets; these values are higher than previously measured yield strengths measured on natural and majoritic garnets. Strengths calculated using the experimental lattice strain differ from the strength generated from those calculated using EVPSC. Prp67Alm33, Prp59Maj41 and Prp42Maj58 are of comparable strength to each other at room temperature, which indicates that majorite substitutionmore »does not greatly affect the strength of garnets. Additionally, all three garnets are of similar strength as lower mantle phases such as bridgmanite and ferropericlase, suggesting that garnet may not be notably stronger than the surrounding lower mantle/deep upper mantle phases at the base of the upper mantle.« less
  4. The degree to which the Earth’s mantle stores and cycles water in excess of the storage capacity of nominally anhydrous minerals is dependent upon the stability of hydrous phases under mantle-relevant pressures, temperatures, and compositions. Two hydrous phases, phase D and phase H, are stable to the pressures and temperatures of the Earth’s lower mantle, suggesting that the Earth’s lower mantle may participate in the cycling of water. We build on our prior work of density functional theory calculations on phase H with the stability, structure, and bonding of hydrous phases D, and we predict the aluminum partitioning with H in the Al 2 O 3 -SiO 2 -MgO-H 2 O system. We address the solid solutions through a statistical sampling of site occupancy and calculation of the partition function from the grand canonical ensemble. We show that each phase has a wide solid solution series between MgSi 2 O 6 H 2 -Al 2 SiO 6 H 2 and MgSiO 4 H 2 -2 δ AlOOH + SiO 2 , in which phase H is more aluminum rich than phase D at a given bulk composition. We predict that the addition of Al to both phases D and Hmore »stabilizes each phase to higher temperatures through additional configurational entropy. While we have shown that phase H does not exhibit symmetric hydrogen bonding at high pressure, we report here that phase D undergoes a gradual increase in the number of symmetric H-bonds beginning at ∼30 GPa, and it is only ∼50% complete at 60 GPa.« less
  5. Abstract Grain boundaries in mantle minerals are of critical importance to geophysical and geochemical processes of the Earth’s interior. One of the fundamental issues is to understand how the water (H2O) component influences the properties of grain boundaries in silicate materials. Here, we report the results of the structure and stability of several tilt grain boundaries in Mg2SiO4 forsterite over the pressure range 0 to 15 GPa using density functional theory-based first-principles simulations. The results suggest greater energetic stability and hydration-driven volume collapse (negative excess volume) at zero pressure for the majority of hydrous grain boundaries relative to the anhydrous (dry) ones. All the hydrous grain boundaries become increasingly favorable at elevated pressures as the calculated hydration enthalpy systematically decreases with increasing pressure. The hydrous components at the interfacial regions are predominantly in the hydroxyl form and, to a lesser extent, in the molecular H2O form. Their calculated ratio ranges from 1.6 to 8.7 among the different grain boundary configurations. Our structural analysis also reveals that the hydroxyls are bound to either both Mg and Si or to Mg only. In comparison, the molecular species are bound only to Mg sites. Besides direct oxygen-hydrogen bonding, intermolecular hydrogen bonding becomes importantmore »with compression. On the basis of our results, we suggest that local atomic rearrangements caused by dissociative adsorption of water facilitate efficient compaction of the boundary interfaces, which, in turn, results in greater relative stability of hydrous grain boundaries. This means that water prefers to be incorporated within the grain boundaries over the bulk of silicate materials.« less