Phase egg, [AlSiO3(OH)], is an aluminosilicate hydrous mineral that is thermodynamically stable in lithological compositions represented by Al2O3-SiO2-H2O (ASH) ternary, i.e., a simplified ternary for the mineralogy of subducted sediments and continental crustal rocks. High-pressure and high-temperature experiments on lithological compositions resembling hydrated sedimentary layers in subducting slabs show that phase egg is stable up to pressures of 20–30 GPa, which translates to the transition zone to lower mantle depths. Thus, phase egg is a potential candidate for transporting water into the Earth’s mantle transition zone. In this study, we use first-principles simulations based on density functional theory to explore the pressure dependence of crystal structure and how it influences energetics and elasticity. Our results indicate that phase egg exhibits anomalous behavior of the pressure dependence of the elasticity at mantle transition zone depths (~15 GPa). Such anomalous behavior in the elasticity is related to changes in the hydrogen bonding O-H···O configurations, which we delineate as a transition from a low-pressure to a high-pressure structure of phase egg. Full elastic constant tensors indicate that phase egg is very anisotropic resulting in a maximum anisotropy of compressional wave velocity, AvP ≈ 30% and of shear wave velocity, AvS ≈ 17% atmore »
This content will become publicly available on April 1, 2023
Water in the crystal structure of CaSiO3 perovskite
Abstract While the water storage capacities of the upper 700 km depths of the mantle have been constrained by high-pressure experiments and diamond inclusion studies, the storage capacity of the lower mantle remains controversial. A recent high-pressure experimental study on CaSiO3 perovskite, which is the third most abundant mineral in the lower mantle, reported possible storage of H2O up to a few weight percent. However, the substitution mechanism for H in this phase remains unknown. We have conducted a series of density functional theory calculations under static-lattice conditions and high pressures to elucidate hydration mechanisms at the atomic scale. All of the possible dodecahedral (Ca2+ → 2H+) and octahedral (Si4+ → 4H+) substitution configurations for a tetragonal perovskite lattice have very small energy differences, suggesting the coexistence of multiples of H configurations in CaSiO3 perovskite at mantle pressures and temperatures. The dodecahedral substitutions decrease the bulk modulus, resulting in a smaller unit-cell volume of hydrous CaSiO3 perovskite under pressure, consistent with the experimental observations. Although the octahedral substitutions also decrease the bulk modulus, they increase the unit-cell volume at 1 bar. The H atoms substituted in the dodecahedral sites develop much less hydrogen bonding with O atoms, leading to a more »
- Award ID(s):
- 2019565
- Publication Date:
- NSF-PAR ID:
- 10335204
- Journal Name:
- American Mineralogist
- Volume:
- 107
- Issue:
- 4
- Page Range or eLocation-ID:
- 631 to 641
- ISSN:
- 0003-004X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Water (H2O) as one of the most abundant fluids present in Earth plays crucial role in the generation and transport of magmas in the interior. Though hydrous silicate melts have been studied extensively, the experimental data are confined to relatively low pressures and the computational results are still rare. Moreover, these studies imply large differences in the way water influences the physical properties of silicate magmas, such as density and electrical conductivity. Here, we investigate the equation of state, speciation, and transport properties of water dissolved in Mg1-xFexSiO3 and Mg2(1-x)Fe2xSiO4 melts (for x = 0 and 0.25) as well as in its bulk (pure) fluid state over the entire mantle pressure regime at 2000 to 4000 K using first-principles molecular dynamics. The simulation results allow us to constrain the partial molar volume of the water component in melts along with the molar volume of pure water. The predicted volume of silicate melt+water solution is negative at low pressures and becomes zero above 15 GPa. Consequently, the hydrous component tends to lower the melt density to similar extent over much of the mantle pressure regime irrespective of composition. Our results also show that hydrogen diffuses fast in silicate melts and enhancesmore »
-
null (Ed.)Garnet is an important mineral phase in the upper mantle as it is both a key component in bulk mantle rocks, and a primary phase at high-pressure within subducted basalt. Here, we focus on the strength of garnet and the texture that develops within garnet during accommodation of differential deformational strain. We use X-ray diffraction in a radial geometry to analyze texture development in situ in three garnet compositions under pressure at 300 K: a natural garnet (Prp60Alm37) to 30 GPa, and two synthetic majorite-bearing compositions (Prp59Maj41 and Prp42Maj58) to 44 GPa. All three garnets develop a modest (100) texture at elevated pressure under axial compression. Elasto-viscoplastic self-consistent (EVPSC) modeling suggests that two slip systems are active in the three garnet compositions at all pressures studied: {110}<1-21 11> and {001}<110>. We determine a flow strength of ~5 GPa at pressures between 10 to 15 GPa for all three garnets; these values are higher than previously measured yield strengths measured on natural and majoritic garnets. Strengths calculated using the experimental lattice strain differ from the strength generated from those calculated using EVPSC. Prp67Alm33, Prp59Maj41 and Prp42Maj58 are of comparable strength to each other at room temperature, which indicates that majorite substitutionmore »
-
The degree to which the Earth’s mantle stores and cycles water in excess of the storage capacity of nominally anhydrous minerals is dependent upon the stability of hydrous phases under mantle-relevant pressures, temperatures, and compositions. Two hydrous phases, phase D and phase H, are stable to the pressures and temperatures of the Earth’s lower mantle, suggesting that the Earth’s lower mantle may participate in the cycling of water. We build on our prior work of density functional theory calculations on phase H with the stability, structure, and bonding of hydrous phases D, and we predict the aluminum partitioning with H in the Al 2 O 3 -SiO 2 -MgO-H 2 O system. We address the solid solutions through a statistical sampling of site occupancy and calculation of the partition function from the grand canonical ensemble. We show that each phase has a wide solid solution series between MgSi 2 O 6 H 2 -Al 2 SiO 6 H 2 and MgSiO 4 H 2 -2 δ AlOOH + SiO 2 , in which phase H is more aluminum rich than phase D at a given bulk composition. We predict that the addition of Al to both phases D and Hmore »
-
Abstract Grain boundaries in mantle minerals are of critical importance to geophysical and geochemical processes of the Earth’s interior. One of the fundamental issues is to understand how the water (H2O) component influences the properties of grain boundaries in silicate materials. Here, we report the results of the structure and stability of several tilt grain boundaries in Mg2SiO4 forsterite over the pressure range 0 to 15 GPa using density functional theory-based first-principles simulations. The results suggest greater energetic stability and hydration-driven volume collapse (negative excess volume) at zero pressure for the majority of hydrous grain boundaries relative to the anhydrous (dry) ones. All the hydrous grain boundaries become increasingly favorable at elevated pressures as the calculated hydration enthalpy systematically decreases with increasing pressure. The hydrous components at the interfacial regions are predominantly in the hydroxyl form and, to a lesser extent, in the molecular H2O form. Their calculated ratio ranges from 1.6 to 8.7 among the different grain boundary configurations. Our structural analysis also reveals that the hydroxyls are bound to either both Mg and Si or to Mg only. In comparison, the molecular species are bound only to Mg sites. Besides direct oxygen-hydrogen bonding, intermolecular hydrogen bonding becomes importantmore »