skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Networks of necessity: Simulating COVID-19 mitigation strategies for disabled people and their caregivers
A major strategy to prevent the spread of COVID-19 is the limiting of in-person contacts. However, limiting contacts is impractical or impossible for the many disabled people who do not live in care facilities but still require caregivers to assist them with activities of daily living. We seek to determine which interventions can best prevent infections of disabled people and their caregivers. To accomplish this, we simulate COVID-19 transmission with a compartmental model that includes susceptible, exposed, asymptomatic, symptomatically ill, hospitalized, and removed/recovered individuals. The networks on which we simulate disease spread incorporate heterogeneity in the risk levels of different types of interactions, time-dependent lockdown and reopening measures, and interaction distributions for four different groups (caregivers, disabled people, essential workers, and the general population). Of these groups, we find that the probability of becoming infected is largest for caregivers and second largest for disabled people. Consistent with this finding, our analysis of network structure illustrates that caregivers have the largest modal eigenvector centrality of the four groups. We find that two interventions—contact-limiting by all groups and mask-wearing by disabled people and caregivers—most reduce the number of infections in disabled and caregiver populations. We also test which group of people spreads COVID-19 most readily by seeding infections in a subset of each group and comparing the total number of infections as the disease spreads. We find that caregivers are the most potent spreaders of COVID-19, particularly to other caregivers and to disabled people. We test where to use limited infection-blocking vaccine doses most effectively and find that (1) vaccinating caregivers better protects disabled people from infection than vaccinating the general population or essential workers and that (2) vaccinating caregivers protects disabled people from infection about as effectively as vaccinating disabled people themselves. Our results highlight the potential effectiveness of mask-wearing, contact-limiting throughout society, and strategic vaccination for limiting the exposure of disabled people and their caregivers to COVID-19.  more » « less
Award ID(s):
2027438
PAR ID:
10335213
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Grilli, Jacopo
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
18
Issue:
5
ISSN:
1553-7358
Page Range / eLocation ID:
e1010042
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gallos, Lazaros K. (Ed.)
    We develop an agent-based model on a network meant to capture features unique to COVID-19 spread through a small residential college. We find that a safe reopening requires strong policy from administrators combined with cautious behavior from students. Strong policy includes weekly screening tests with quick turnaround and halving the campus population. Cautious behavior from students means wearing facemasks, socializing less, and showing up for COVID-19 testing. We also find that comprehensive testing and facemasks are the most effective single interventions, building closures can lead to infection spikes in other areas depending on student behavior, and faster return of test results significantly reduces total infections. 
    more » « less
  2. Eksin, Ceyhun (Ed.)
    The global pandemic of COVID-19 revealed the dynamic heterogeneity in how individuals respond to infection risks, government orders, and community-specific social norms. Here we demonstrate how both individual observation and social learning are likely to shape behavioral, and therefore epidemiological, dynamics over time. Efforts to delay and reduce infections can compromise their own success, especially when disease risk and social learning interact within sub-populations, as when people observe others who are (a) infected and/or (b) socially distancing to protect themselves from infection. Simulating socially-learning agents who observe effects of a contagious virus, our modelling results are consistent with with 2020 data on mask-wearing in the U.S. and also concur with general observations of cohort induced differences in reactions to public health recommendations. We show how shifting reliance on types of learning affect the course of an outbreak, and could therefore factor into policy-based interventions incorporating age-based cohort differences in response behavior. 
    more » « less
  3. The COVID-19 pandemic has been marked by a controversy in the United States over the public health benefits of mask-wearing, especially on social media. Many have contested the scientific consensus that masks are an effective method to prevent and slow the spread of COVID-19 infections, often along explicitly political lines. Here, we investigate specifically how Twitter users engaging in arguments about mask-wearing invoke scientific principles to argue against masks. We further analyze the sources that these users cite to support their claims. Using a qualitative approach drawing from constructivist grounded theory, we show how these users work to defend the legitimacy of their claims and their external sources by selectively exploiting rhetorical values of scientific endeavour. We analogize their work to the process of scientific boundary-work, in which actors consciously manipulate the boundary between science and not-science for personal and political gain. 
    more » « less
  4. null (Ed.)
    Abstract We use COVID-19 case and mortality data from 1 February 2020 to 21 September 2020 and a deterministic SEIR (susceptible, exposed, infectious and recovered) compartmental framework to model possible trajectories of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and the effects of non-pharmaceutical interventions in the United States at the state level from 22 September 2020 through 28 February 2021. Using this SEIR model, and projections of critical driving covariates (pneumonia seasonality, mobility, testing rates and mask use per capita), we assessed scenarios of social distancing mandates and levels of mask use. Projections of current non-pharmaceutical intervention strategies by state—with social distancing mandates reinstated when a threshold of 8 deaths per million population is exceeded (reference scenario)—suggest that, cumulatively, 511,373 (469,578–578,347) lives could be lost to COVID-19 across the United States by 28 February 2021. We find that achieving universal mask use (95% mask use in public) could be sufficient to ameliorate the worst effects of epidemic resurgences in many states. Universal mask use could save an additional 129,574 (85,284–170,867) lives from September 22, 2020 through the end of February 2021, or an additional 95,814 (60,731–133,077) lives assuming a lesser adoption of mask wearing (85%), when compared to the reference scenario. 
    more » « less
  5. Wardman, Jamie (Ed.)
    Currently, one of the most pressing public health challenges is encouraging people to get vaccinated against COVID-19. Due to limited supplies, some people have had to wait for the COVID-19 vaccine. Consumer research has suggested that people who are overlooked in initial distribution of desired goods may no longer be interested. Here, we therefore examined people’s preferences for proposed vaccine allocation strategies, as well as their anticipated responses to being overlooked. After health-care workers, most participants preferred prioritizing vaccines for high-risk individuals living in group-settings (49%) or with families (29%). We also found evidence of reluctance if passed over. After random assignment to vaccine allocation strategies that would initially overlook them, 37% of participants indicated that they would refuse the vaccine. The refusal rate rose to 42% when the vaccine allocation strategy prioritized people in areas with more COVID-19 – policies that were implemented in many areas. Even among participants who did not self-identify as vaccine hesitant, 22% said they would not want the vaccine in that case. Logistic regressions confirmed that vaccine refusal would be largest if vaccine allocation strategies targeted people who live in areas with more COVID-19 infections. In sum, once people are overlooked by vaccine allocation, they may no longer want to get vaccinated, even if they were not originally vaccine hesitant. Vaccine allocation strategies that prioritize high-infection areas and high-risk individuals in group-settings may enhance these concerns. 
    more » « less