skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Actions at the Edge: Jointly Optimizing the Resources in Multi-Access Edge Computing
Award ID(s):
1722791 2106589
PAR ID:
10335215
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE Wireless Communications
Volume:
29
Issue:
2
ISSN:
1536-1284
Page Range / eLocation ID:
192 to 198
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The envisioned capabilities of mobile edge computing are predicated on a delivery infrastructure with capacity, ubiquity, robustness, and capabilities to serve a country-wide user base. In this paper, we present an empirical study of key aspects of mobile edge infrastructure toward the goal of understanding their current characteristics and identifying future deployments. We start by analyzing a dataset of over 4M cell tower locations in the US. We evaluate the geographic characteristics of deployments and highlight how locations correspond to population density in major metropolitan areas and in rural areas. We also show how deployments have been arranged along highways throughout the US. Our analysis highlight areas where new deployments would be warranted. Finally, we analyze how cell tower deployments correspond to current major data center locations and assess how micro servers might be deployed to improve response times and to better serve customers. 
    more » « less
  2. Edge computing has emerged as a popular paradigm for running latency-sensitive applications due to its ability to offer lower network latencies to end-users. In this paper, we argue that despite its lower network latency, the resource-constrained nature of the edge can result in higher end-to-end latency, especially at higher utilizations, when compared to cloud data centers. We study this edge performance inversion problem through an analytic comparison of edge and cloud latencies and analyze conditions under which the edge can yield worse performance than the cloud. To verify our analytic results, we conduct a detailed experimental comparison of the edge and the cloud latencies using a realistic application and real cloud workloads. Both our analytical and experimental results show that even at moderate utilizations, the edge queuing delays can offset the benefits of lower network latencies, and even result in performance inversion where running in the cloud would provide superior latencies. We finally discuss practical implications of our results and provide insights into how application designers and service providers should design edge applications and systems to avoid these pitfalls. 
    more » « less