Reduced ecological specialization is an emerging, general pattern of ecological networks in fragmented landscapes. In plant–herbivore interactions, reductions in dietary specialization of herbivore communities are consistently associated with fragmented landscapes, but the causes remain poorly understood. We propose several hypothetical bottom–up and top–down mechanisms that may reduce the specificity of plant–herbivore interactions. These include empirically plausible applications and extensions of theory based on reduced habitat patch size and isolation (considered jointly), and habitat edge effects. Bottom–up effects in small, isolated habitat patches may limit availability of suitable hostplants, a constraint that increases with dietary specialization. Poor hostplant quality due to inbreeding in such fragments may especially disadvantage dietary specialist herbivores even when their hostplants are present. Size and isolation of habitat patches may change patterns of predation of herbivores, but whether such putative changes are associated with herbivore dietary specialization should depend on the mobility, size, and diet breadth of predators. Bottom–up edge effects may favor dietary generalist herbivores, yet top–down edge effects may favor dietary specialists owing to reduced predation. An increasingly supported edge effect is trophic ricochets generated by large grazers/browsers, which remove key hostplant species of specialist herbivores. We present empirical evidence that greater deer browsing in small forest fragments disproportionately reduces specialist abundances in lepidopteran assemblages in northeastern USA. Despite indirect evidence for these mechanisms, they have received scant direct testing with experimental approaches at a landscape scale. Identifying their relative contribu 
                        more » 
                        « less   
                    
                            
                            Herbivory and Drought Reduce the Temporal Stability of Herbaceous Cover by Increasing Synchrony in a Semi-arid Savanna
                        
                    
    
            Ecological stability in plant communities is shaped by bottom-up processes like environmental resource fluctuations and top-down controls such as herbivory, each of which have demonstrated direct effects but may also act indirectly by altering plant community dynamics. These indirect effects, called biotic stability mechanisms, have been studied across environmental gradients, but few studies have assessed the importance of top-down controls on biotic stability mechanisms in conjunction with bottom-up processes. Here we use a long-term herbivore exclusion experiment in central Kenya to explore the joint effects of drought and herbivory (bottom-up and top-down limitation, respectively) on three biotic stability mechanisms: (1) species asynchrony, in which a decline in one species is compensated for by a rise in another, (2) stable dominant species driving overall stability, and (3) the portfolio effect, in which a community property is distributed among multiple species. We calculated the temporal stability of herbaceous cover and biotic stability mechanisms over a 22-year time series and with a moving window to examine changes through time. Both drought and herbivory additively reduced asynchronous dynamics, leading to lower stability during droughts and under high herbivore pressure. This effect is likely attributed to a reduction in palatable dominant species under higher herbivory, which creates space for subordinate species to fluctuate synchronously in response to rainfall variability. Dominant species population stability promoted community stability, an effect that did not vary with precipitation but depended on herbivory. The portfolio effect was not important for stability in this system. Our results demonstrate that this system is naturally dynamic, and a future of increasing drought may reduce its stability. However, these effects will in turn be amplified or buffered depending on changes in herbivore communities and their direct and indirect impacts on plant community dynamics. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1931224
- PAR ID:
- 10335422
- Date Published:
- Journal Name:
- Frontiers in Ecology and Evolution
- Volume:
- 10
- ISSN:
- 2296-701X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Arid ecosystems are strongly limited by water availability, and precipitation plays a major role in the dynamics of all species in arid regions, as well as the ecosystem processes that occur there. However, understanding how biotic interactions mediate long‐term responses of dryland ecosystems to rainfall remains very fragmented. We report on a unique large‐scale field experiment spanning 25 yr and three trophic levels (plants, small mammal herbivores, predators) in a dryland ecosystem in the northern Chilean Mediterranean Region where we assessed how biotic interactions influence the long‐term plant community responses to precipitation. As the most persistent ecological changes in dryland systems may result from changes in the structure, cover, and composition of the perennial vegetation, we emphasized the interplay between bottom‐up and top‐down controls of perennial plants in our analyses. Rainfall was the primary factor affecting the dynamics of, and interactions among, plants and small mammals. Ephemeral plant cover dynamics closely tracked short‐term annual rainfall, but seemed unaffected by top‐down controls (herbivory). In contrast, the response of the perennial plant cover to precipitation was mediated by (1) a complex interplay between subtle top‐down (herbivory) controls that become more apparent in the long‐term, (2) competition with ephemeral plants during wet years, and (3) an indirect effect of predators on subdominant shrubs and perennial herbs. This long‐term field experiment highlights how climate‐induced responses of arid perennial vegetation are influenced by interactions across trophic levels and temporal scales. In the face of global change, understanding how multi‐trophic controls mediate dryland vegetation responses to climate is essential to properly managing the conservation of biodiversity in arid systems.more » « less
- 
            Abstract Anthropogenic climate warming affects plant communities by changing community structure and function. Studies on climate warming have primarily focused on individual effects of warming, but the interactive effects of warming with biotic factors could be at least as important in community responses to climate change. In addition, climate change experiments spanning multiple years are necessary to capture interannual variability and detect the influence of these effects within ecological communities. Our study explores the individual and interactive effects of warming and insect herbivory on plant traits and community responses within a 7‐year warming and herbivory manipulation experiment in two early successional plant communities in Michigan, USA. We find stronger support for the individual effects of both warming and herbivory on multiple plant morphological and phenological traits; only the timing of plant green‐up and seed set demonstrated an interactive effect between warming and herbivory. With herbivory, warming advanced green‐up, but with reduced herbivory, there was no significant effect of warming. In contrast, warming increased plant biomass, but the effect of warming on biomass did not depend upon the level of insect herbivores. We found that these treatments had stronger effects in some years than others, highlighting the need for multiyear experiments. This study demonstrates that warming and herbivory can have strong direct effects on plant communities, but that their interactive effects are limited in these early successional systems. Because the strength and direction of these effects can vary by ecological context, it is still advisable to include levels of biotic interactions, multiple traits and years, and community type when studying climate change effects on plants and their communities.more » « less
- 
            Abstract Pulsed fluxes of organisms across ecosystem boundaries can exert top‐down and bottom‐up effects in recipient food webs, through both direct effects on the subsidized trophic levels and indirect effects on other components of the system. While previous theoretical and empirical studies demonstrate the influence of allochthonous subsidies on bottom‐up and top‐down processes, understanding how these forces act in conjunction is still limited, particularly when an allochthonous resource can simultaneously subsidize multiple trophic levels. Using the Lake Mývatn region in Iceland as an example system of allochthony and its potential effects on multiple trophic levels, we analyzed a mathematical model to evaluate how pulsed subsidies of aquatic insects affect the dynamics of a soil–plant–arthropod food web. We found that the relative balance of top‐down and bottom‐up effects on a given food web compartment was determined by trophic position, subsidy magnitude, and top predators’ ability to exploit the subsidy. For intermediate trophic levels (e.g., detritivores and herbivores), we found that the subsidy could either alleviate or intensify top‐down pressure from the predator. For some parameter combinations, alleviation and intensification occurred sequentially during and after the resource pulse. The total effect of the subsidy on detritivores and herbivores, including top‐down and bottom‐up processes, was determined by the rate at which predator consumption saturated with increasing size of the allochthonous subsidy, with greater saturation leading to increased bottom‐up effects. Our findings illustrate how resource pulses to multiple trophic levels can influence food web dynamics by changing the relative strength of bottom‐up and top‐down effects, with bottom‐up predominating top‐down effects in most scenarios in this subarctic system.more » « less
- 
            Abstract Climate models predict increases in the frequency and intensity of extreme‐weather events. The impacts of these events may be modulated by biotic agents in unpredictable ways, yet few experiments cover sufficient spatiotemporal scales to measure the interactive effects of multiple extreme events.We used 15 years of a 28‐year experiment spanning several significant droughts to investigate how rainfall, large herbivores, and soil‐engineering termites affect understorey vegetation in a semi‐arid savanna.Herbivory was the dominant influence on community structure—decreasing cover, increasing species richness, and favouring occurrence of annuals relative to perennials—but these effects were contingent on rainfall and termitaria in non‐additive (hence unpredictable) ways.A separate experiment showed that resource enrichment, mimicking the effects of termitaria, does not straightforwardly compensate for top‐down effects of herbivory.Synthesis. Our study highlights the potency of top‐down forcing in African savannas. It suggests impressive robustness to drought and underscores the value of multi‐decadal experiments for studying interactions among multiple drivers of ecosystem dynamics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    