skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Phylogeny-Informed Analysis of the Global Coral-Symbiodiniaceae Interaction Network Reveals that Traits Correlated with Thermal Bleaching Are Specific to Symbiont Transmission Mode
ABSTRACT The complex network of associations between corals and their dinoflagellates (family Symbiodiniaceae) are the basis of coral reef ecosystems but are sensitive to increasing global temperatures. Coral-symbiont interactions are restricted by ecological and evolutionary determinants that constrain partner choice and influence holobiont response to environmental stress; however, little is known about how these processes shape thermal resilience of the holobiont. Here, we built a network of global coral-Symbiodiniaceae associations, mapped species traits (e.g., symbiont transmission mode and biogeography) and phylogenetic relationships of both partners onto the network, and assigned thermotolerance to both host and symbiont nodes. Using network analysis and phylogenetic comparative methods, we determined the contribution of species traits to thermal resilience of the holobiont, while accounting for evolutionary patterns among species. We found that the network shows nonrandom interactions among species, which are shaped by evolutionary history, symbiont transmission mode (horizontally transmitted [HT] or vertically transmitted [VT] corals) and biogeography. Coral phylogeny, but not Symbiodiniaceae phylogeny, symbiont transmission mode, or biogeography, was a good predictor of thermal resilience. Closely related corals have similar Symbiodiniaceae interaction patterns and bleaching susceptibilities. Nevertheless, the association patterns that explain increased host thermal resilience are not generalizable across the entire network but are instead unique to HT and VT corals. Under nonstress conditions, thermally resilient VT coral species associate with thermotolerant phylotypes and limit their number of unique symbionts and overall symbiont thermotolerance diversity, while thermally resilient HT coral species associate with a few host-specific symbiont phylotypes. IMPORTANCE Recent advances have revealed a complex network of interactions between coral and Symbiodiniaceae. Specifically, nonrandom association patterns, which are determined in part by restrictions imposed by symbiont transmission mode, increase the sensitivity of the overall network to thermal stress. However, little is known about the extent to which coral-Symbiodiniaceae network resistance to thermal stress is shaped by host and symbiont species phylogenetic relationships and host and symbiont species traits, such as symbiont transmission mode. We built a frequency-weighted global coral-Symbiodiniaceae network and used network analysis and phylogenetic comparative methods to show that evolutionary relatedness, but not transmission mode, predicts thermal resilience of the coral-Symbiodiniaceae holobiont. Consequently, thermal stress events could result in nonrandom pruning of susceptible lineages and loss of taxonomic diversity with catastrophic effects on community resilience to future events. Our results show that inclusion of the contribution of evolutionary and ecological processes will further our understanding of the fate of coral assemblages under climate change.  more » « less
Award ID(s):
1830961
PAR ID:
10335472
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Bik, Holly
Date Published:
Journal Name:
mSystems
Volume:
6
Issue:
3
ISSN:
2379-5077
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The future of coral reefs in a warming world depends on corals’ ability to recover from bleaching, the loss of their symbiotic dinoflagellate algae (Symbiodiniaceae) during marine heatwaves. Heat-tolerant symbiont species can remain in symbiosis during heat stress, but often provide less photosynthate to the host than heat-sensitive species under ambient conditions. Understanding how heat stress changes the dynamics of this tradeoff between stress tolerance and mutualism contribution is crucial for predicting coral success under climate change. To test how symbiont resource allocation affects coral recovery from heat stress, we exposed the coral Montipora capitata hosting either heat-sensitive Cladocopium C31 (C) or heat-tolerant Durusdinium glynnii (D) to heat stress. D regained symbiont density and photochemical efficiency faster after heat treat- ment than C, but symbiont recovery did not restore coral biomass or calcification rates to pre-bleaching levels in the initial recovery period. D populations also contributed less photosynthate to the host relative to C, even during heat stress. Further, higher-density symbiont populations of both species retained more photosynthate than lower-density populations, and corals receiving less photosynthate exhibited reduced calcification rates and lower intracellular pH. This is the first evidence that symbiont density and carbon translocation are negatively related, and the first to establish a link between Symbiodiniaceae carbon translocation and coral cellular homeostasis. Together, these results suggest the energy demand of symbiont regrowth after bleaching reduces their mutualism contribution and can thus delay host recovery. Reestablishing a beneficial endos- ymbiosis imposes additional costs as holobionts overcome stress, and may explain latent mortality among coral populations after alleviation of heat stress in the field. 
    more » « less
  2. Abstract Background The importance of symbiosis has long been recognized on coral reefs, where the photosynthetic dinoflagellates of corals (Symbiodiniaceae) are the primary symbiont. Numerous studies have now shown that a diverse assemblage of prokaryotes also make-up part of the microbiome of corals. A subset of these prokaryotes is capable of fixing nitrogen, known as diazotrophs, and is also present in the microbiome of scleractinian corals where they have been shown to supplement the holobiont nitrogen budget. Here, an analysis of the microbiomes of 16 coral species collected from Australia, Curaçao, and Hawai’i using three different marker genes (16S rRNA, nif H, and ITS2) is presented. These data were used to examine the effects of biogeography, coral traits, and ecological life history characteristics on the composition and diversity of the microbiome in corals and their diazotrophic communities. Results The prokaryotic microbiome community composition (i.e., beta diversity) based on the 16S rRNA gene varied between sites and ecological life history characteristics, but coral morphology was the most significant factor affecting the microbiome of the corals studied. For 15 of the corals studied, only two species Pocillopora acuta and Seriotopora hystrix , both brooders, showed a weak relationship between the 16S rRNA gene community structure and the diazotrophic members of the microbiome using the nif H marker gene, suggesting that many corals support a microbiome with diazotrophic capabilities. The order Rhizobiales , a taxon that contains primarily diazotrophs, are common members of the coral microbiome and were eight times greater in relative abundances in Hawai’i compared to corals from either Curacao or Australia. However, for the diazotrophic component of the coral microbiome, only host species significantly influenced the composition and diversity of the community. Conclusions The roles and interactions between members of the coral holobiont are still not well understood, especially critical functions provided by the coral microbiome (e.g., nitrogen fixation), and the variation of these functions across species. The findings presented here show the significant effect of morphology, a coral “super trait,” on the overall community structure of the microbiome in corals and that there is a strong association of the diazotrophic community within the microbiome of corals. However, the underlying coral traits linking the effects of host species on diazotrophic communities remain unknown. 
    more » « less
  3. Ocean deoxygenation is intensifying globally due to human activities – and is emerging as a grave threat to coral reef ecosystems where it can cause coral bleaching and mass mortality. However, deoxygenation is one of many threats to coral reefs, making it essential to understand how prior environmental stress may influence responses to deoxygenation. To address this question, we examined responses of the coral holobiont (i.e., the coral host, Symbiodiniaceae, and the microbiome) to deoxygenation in corals with different environmental stress backgrounds. We outplantedAcropora cervicornisfragments of known genotypes from anin situnursery to two sites in the Florida Keys spanning an inshore-offshore gradient. After four months, fragments from the outplanted corals were transferred to the laboratory, where we tested differences in survivorship, tissue loss, photosynthetic efficiency, Symbiodiniaceae cell density, and coral microbiome composition after persistent exposure to one of four oxygen treatments ranging from extreme deoxygenation (0.5 mg L-1) to normoxia (6 mg L-1). We found that, for the short duration of exposure tested in this study (four days), the entire coral holobiont was resistant to dissolved oxygen (DO) concentrations as low as 2.0 mg L-1, but that the responses of members of the holobiont decoupled at 0.5 mg L-1. In this most extreme treatment, the coral host showed decreased photosynthetic efficiency, tissue loss, and mortality, and lower Symbiodiniaceae densities in a bleaching response, but most microbial taxa remained stable. Although deoxygenation did not cause major community shifts in microbiome composition, the population abundance of some microbial taxa did respond. Site history influenced some responses of the coral host and endosymbiont, but not the coral microbiome, with corals from the more stressful inshore site showing greater susceptibility to subsequent deoxygenation. Our study reveals that coral holobiont members respond differently to deoxygenation, with greater sensitivity in the coral host and Symbiodiniaceae and greater resistance in the coral microbiome, and that prior stress exposure can decrease host tolerance to deoxygenation. 
    more » « less
  4. Abstract Corals are important models for understanding invertebrate host–microbe interactions; however, to fully discern mechanisms involved in these relationships, experimental approaches for manipulating coral–bacteria associations are needed. Coral‐associated bacteria affect holobiont health via nutrient cycling, metabolic exchanges and pathogen exclusion, yet it is not fully understood how bacterial community shifts affect holobiont health and physiology. In this study, a combination of antibiotics (ampicillin, streptomycin and ciprofloxacin) was used to disrupt the bacterial communities of 14 colonies of the reef framework‐building corals Pocillopora meandrina and P .  verrucosa, originally collected from Panama and hosting diverse algal symbionts (family Symbiodiniaceae ). Symbiodiniaceae photochemical efficiencies and holobiont oxygen consumption (as proxies for coral health) were measured throughout a 5‐day exposure. Antibiotics altered bacterial community composition and reduced alpha and beta diversity, however, several bacteria persisted, leading to the hypothesis that these bacteria are either antibiotics resistant or occupy internal niches that are shielded from antibiotics. While antibiotics did not affect Symbiodiniaceae photochemical efficiency, antibiotics‐treated corals had lower oxygen consumption rates. RNAseq revealed that antibiotics increased expression of Pocillopora immunity and stress response genes at the expense of cellular maintenance and metabolism functions. Together, these results reveal that antibiotic disruption of corals' native bacteria negatively impacts holobiont health by decreasing oxygen consumption and activating host immunity without directly impairing Symbiodiniaceae photosynthesis, underscoring the critical role of coral‐associated bacteria in holobiont health. They also provide a baseline for future experiments that manipulate Pocillopora corals' symbioses by first reducing the diversity and complexity of coral‐associated bacteria. 
    more » « less
  5. van_der_Hooft, Justin_J J (Ed.)
    ABSTRACT Coral reefs are experiencing unprecedented loss in coral cover due to increased incidence of disease and bleaching events. Thus, understanding mechanisms of disease susceptibility and resilience, which vary by species, is important. In this regard, untargeted metabolomics serves as an important hypothesis-building tool enabling the delineation of molecular factors underlying disease susceptibility or resilience. In this study, we characterize metabolomes of four species of visually healthy stony corals, includingMeandrina meandrites,Orbicella faveolata,Colpophyllia natans, andMontastraea cavernosa, collected at least a year before stony coral tissue loss disease reached the Dry Tortugas, Florida, and demonstrate that both symbiont and host-derived biochemical pathways vary by species. Metabolomes ofMeandrina meandritesdisplayed minimal intraspecies variability and the highest biological activity against coral pathogens when compared to other species in this study. The application of advanced metabolite annotation methods enabled the delineation of several pathways underlying interspecies variability. Specifically, endosymbiont-derived vitamin E family compounds, betaine lipids, and host-derived acylcarnitines were among the top predictors of interspecies variability. Since several metabolite features that contributed to inter- and intraspecies variation are synthesized by the endosymbiotic Symbiodiniaceae, which could be a major source of these compounds in corals, our data will guide further investigations into these Symbiodiniaceae-derived pathways. IMPORTANCEPrevious research profiling gene expression, proteins, and metabolites produced during thermal stress have reported the importance of endosymbiont-derived pathways in coral bleaching resistance. However, our understanding of interspecies variation in these pathways among healthy corals and their role in diseases is limited. We surveyed the metabolomes of four species of healthy corals with differing susceptibilities to the devastating stony coral tissue loss disease and applied advanced annotation approaches in untargeted metabolomics to determine the interspecies variation in host and endosymbiont-derived pathways. Using this approach, we propose the survey of immune markers such as vitamin E family compounds, acylcarnitines, and other metabolites to infer their role in resilience to coral diseases. As time-resolved multi-omics datasets are generated for disease-impacted corals, our approach and findings will be valuable in providing insight into the mechanisms of disease resistance. 
    more » « less