We report on the use of extreme ultraviolet (XUV, 30.3 nm) radiation from the Free-electron LASer in Hamburg (FLASH) and visible (Vis, 405 nm) photons from an optical laser to investigate the relaxation and fragmentation dynamics of fluorene ions. The ultrashort laser pulses allow to resolve the molecular processes occurring on the femtosecond timescales. Fluorene is a prototypical small polycyclic aromatic hydrocarbon (PAH). Through their infrared emission signature, PAHs have been shown to be ubiquitous in the universe, and they are assumed to play an important role in the chemistry of the interstellar medium. Our experiments track the ionization and dissociative ionization products of fluorene through time-of-flight mass spectrometry and velocity-map imaging. Multiple processes involved in the formation of each of the fragment ions are disentangled through analysis of the ion images. The relaxation lifetimes of the excited fluorene monocation and dication obtained through the fragment formation channels are reported to be in the range of a few tens of femtoseconds to a few picoseconds.
more »
« less
Time-resolved relaxation and fragmentation of polycyclic aromatic hydrocarbons investigated in the ultrafast XUV-IR regime
Abstract Polycyclic aromatic hydrocarbons (PAHs) play an important role in interstellar chemistry and are subject to high energy photons that can induce excitation, ionization, and fragmentation. Previous studies have demonstrated electronic relaxation of parent PAH monocations over 10–100 femtoseconds as a result of beyond-Born-Oppenheimer coupling between the electronic and nuclear dynamics. Here, we investigate three PAH molecules: fluorene, phenanthrene, and pyrene, using ultrafast XUV and IR laser pulses. Simultaneous measurements of the ion yields, ion momenta, and electron momenta as a function of laser pulse delay allow a detailed insight into the various molecular processes. We report relaxation times for the electronically excited PAH * , PAH +* and PAH 2+* states, and show the time-dependent conversion between fragmentation pathways. Additionally, using recoil-frame covariance analysis between ion images, we demonstrate that the dissociation of the PAH 2+ ions favors reaction pathways involving two-body breakup and/or loss of neutral fragments totaling an even number of carbon atoms.
more »
« less
- Award ID(s):
- 1753324
- PAR ID:
- 10335538
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (∼12 ions shot −1 ). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated. The angular distribution of the fragment ions is much more complex than in previously reported studies for triatomic polycations, and differs substantially between the two isomeric species. With support of simple simulations of the dissociation channels of interest, detailed physical insights into the fragmentation dynamics are obtained, including how the initial dissociation step in a sequential mechanism influences rovibrational dynamics in the metastable intermediate ion and how signatures of this nuclear motion manifest in the measured signals.more » « less
-
RationaleThe electrostatic linear ion trap (ELIT) can be operated as a multi‐reflection time‐of‐flight (MR‐TOF) or Fourier transform (FT) mass analyzer. It has been shown to be capable of performing high‐resolution mass analysis and high‐resolution ion isolations. Although it has been used in charge‐detection mass spectrometry (CDMS), it has not been widely used as a conventional mass spectrometer for ensemble measurements of ions, or for tandem mass spectrometer. The advantages of tandem mass spectrometer with high‐resolution ion isolations in the ELIT have thus not been fully exploited. MethodsA homebuilt ELIT was modified with BaF2viewports to facilitate transmission of a laser beam at the turnaround point of the second ion mirror in the ELIT. Fragmentation that occurs at the turnaround point of these ion mirrors should result in minimal energy partitioning due to the low kinetic energy of ions at these points. The laser was allowed to irradiate ions for a period of many oscillations in the ELIT. ResultsDue to the low energy absorption of gas‐phase ions during each oscillation in the ELIT, fragmentation was found to occur over a range of oscillations in the ELIT generating a homogeneous ion beam. A mirror‐switching pulse is shown to create time‐varying perturbations in this beam that oscillate at the fragment ion characteristic frequencies and generate a time‐domain signal. This was found to recover FT signal for protonated pYGGFL and pSGGFL precursor ions. ConclusionsFragmentation at the turnaround point of an ELIT by continuous‐wave infrared multiphoton dissociation (cw‐IRMPD) is demonstrated. In cases where laser power absorption is low and fragmentation occurs over many laps, a mirror‐switching pulse may be used to recover varying time‐domain signal. The combination of laser activation at the turnaround points and mirror‐switching isolation allows for tandem MS in the ELIT.more » « less
-
Abstract The light-induced ultrafast switching between molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Prior work observed signatures of ultrafast molecular dynamics in both isomers upon ultraviolet excitation but could not follow the electronic relaxation all the way back to the ground state experimentally. Here we study the electronic relaxation of quadricyclane after exciting in the ultraviolet (201 nanometres) using time-resolved gas-phase extreme ultraviolet photoelectron spectroscopy combined with non-adiabatic molecular dynamics simulations. We identify two competing pathways by which electronically excited quadricyclane molecules relax to the electronic ground state. The fast pathway (<100 femtoseconds) is distinguished by effective coupling to valence electronic states, while the slow pathway involves initial motions across Rydberg states and takes several hundred femtoseconds. Both pathways facilitate interconversion between the two isomers, albeit on different timescales, and we predict that the branching ratio of norbornadiene/quadricyclane products immediately after returning to the electronic ground state is approximately 3:2.more » « less
-
Abstract The photo-induced dissociative-ionization of lanthanide complexes Ln(hfac)3(Ln = Pr, Er, Yb) is studied using intense ultrafast transform limited (TL) and linearly chirped laser pulses in a time-of-flight (TOF) mass spectrometry setup. Various fluorine and Ln-containing high-mass fragments were observed in this experiment, including the molecular parent ion, which have not been seen with previous studies relying on relatively long-duration laser pulses (i.e., ns or longer). These new high-mass observations provide important formerly missing information for deducing a set of photo-fragmentation mechanistic pathways for Ln(hfac)3. An overall ultrafast control mechanism is proposed by combining insights from earlier studies and the fragments observed in this research to result in three main distinct photo-fragmentation processes: (a) ligand-metal charge transfer, (b) CF3elimination, and (c) C-C bond rotation processes. We conclude that ultrafast dissociative-ionization could be a promising technique for generating high-mass fragments for potential use in material science applications.more » « less