skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep Learning of Material Transport in Complex Neurite Networks
Neurons exhibit complex geometry in their branched networks of neurites which is essential to the function of individual neuron but also brings challenges to transport a wide variety of essential materials throughout their neurite networks for their survival and function. While numerical methods like isogeometric analysis (IGA) have been used for modeling the material transport process via solving partial differential equations (PDEs), they require long computation time and huge computation resources to ensure accurate geometry representation and solution, thus limit their biomedical application. Here we present a graph neural network (GNN)-based deep learning model to learn the IGA-based material transport simulation and provide fast material concentration prediction within neurite networks of any topology. Given input boundary conditions and geometry configurations, the well-trained model can predict the dynamical concentration change during the transport process with an average error less than 10% and 120∼330 times faster compared to IGA simulations. The effectiveness of the proposed model is demonstrated within several complex neurite networks.  more » « less
Award ID(s):
2227232
PAR ID:
10335583
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Scientific reports
Volume:
11
ISSN:
2045-2322
Page Range / eLocation ID:
11280
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Neurons exhibit complex geometry in their branched networks of neurites which is essential to the function of individual neuron but also brings challenges to transport a wide variety of essential materials throughout their neurite networks for their survival and function. While numerical methods like isogeometric analysis (IGA) have been used for modeling the material transport process via solving partial differential equations (PDEs), they require long computation time and huge computation resources to ensure accurate geometry representation and solution, thus limit their biomedical application. Here we present a graph neural network (GNN)-based deep learning model to learn the IGA-based material transport simulation and provide fast material concentration prediction within neurite networks of any topology. Given input boundary conditions and geometry configurations, the well-trained model can predict the dynamical concentration change during the transport process with an average error less than 10% and $$120 \sim 330$$ 120 ∼ 330 times faster compared to IGA simulations. The effectiveness of the proposed model is demonstrated within several complex neurite networks. 
    more » « less
  2. Neurons exhibit remarkably complex geometry in their neurite networks. So far, how materials are transported in the complex geometry for survival and function of neurons remains an unanswered question. Answering this question is fundamental to understanding the physiology and disease of neurons. Here, we have developed an isogeometric analysis (IGA) based platform for material transport simulation in neurite networks. We modeled the transport process by reaction-diffusion-transport equations and represented geometry of the networks using truncated hierarchical tricubic B-splines (THB-spline3D). We solved the Navier-Stokes equations to obtain the velocity field of material transport in the networks. We then solved the transport equations using the streamline upwind/Petrov-Galerkin (SU/PG) method. Using our IGA solver, we simulated material transport in three basic models of the network geometry: a single neurite, a neurite bifurcation, and a neurite tree with three bifurcations. In addition, the robustness of our solver is illustrated by simulating material transport in three representative and complex neurite networks. From the simulation we discovered several spatial patterns of the transport process. Together, our simulation provides key insights into how material transport in neurite networks is mediated by their complex geometry. 
    more » « less
  3. Abstract The intracellular transport process plays an important role in delivering essential materials throughout branched geometries of neurons for their survival and function. Many neurodegenerative diseases have been associated with the disruption of transport. Therefore, it is essential to study how neurons control the transport process to localize materials to necessary locations. Here, we develop a novel optimization model to simulate the traffic regulation mechanism of material transport in complex geometries of neurons. The transport is controlled to avoid traffic jam of materials by minimizing a pre-defined objective function. The optimization subjects to a set of partial differential equation (PDE) constraints that describe the material transport process based on a macroscopic molecular-motor-assisted transport model of intracellular particles. The proposed PDE-constrained optimization model is solved in complex tree structures by using isogeometric analysis (IGA). Different simulation parameters are used to introduce traffic jams and study how neurons handle the transport issue. Specifically, we successfully model and explain the traffic jam caused by reduced number of microtubules (MTs) and MT swirls. In summary, our model effectively simulates the material transport process in healthy neurons and also explains the formation of a traffic jam in abnormal neurons. Our results demonstrate that both geometry and MT structure play important roles in achieving an optimal transport process in neuron. 
    more » « less
  4. Abstract The intracellular transport process plays an important role in delivering essential materials throughout branched geometries of neurons for their survival and function. Many neurodegenerative diseases have been associated with the disruption of transport. Therefore, it is essential to study how neurons control the transport process to localize materials to necessary locations. Here, we develop a novel optimization model to simulate the traffic regulation mechanism of material transport in three-dimensional complex geometries of neurons. The transport is controlled to avoid traffic jams of materials by minimizing a predefined objective function. The optimization subjects to a set of partial differential equation (PDE) constraints that describe the material transport process based on a macroscopic molecular-motor-assisted transport model of intracellular particles. The proposed PDE-constrained optimization model is solved in complex tree structures by using the isogeometric analysis. Different simulation parameters are used to introduce traffic jams and study how neurons handle the transport issue. Specifically, we successfully model and explain the traffic jam caused by the reduced number of microtubules (MTs) and MT swirls. In summary, our model effectively simulates the material transport process in healthy neurons and also explains the formation of a traffic jam in abnormal neurons. Our results demonstrate that both geometry and MT structure play important roles in achieving an optimal transport process in neurons. 
    more » « less
  5. Abstract We present a new computational framework of neuron growth based on the phase field method and develop an open-source software package called “NeuronGrowth_IGAcollocation”. Neurons consist of a cell body, dendrites, and axons. Axons and dendrites are long processes extending from the cell body and enabling information transfer to and from other neurons. There is high variation in neuron morphology based on their location and function, thus increasing the complexity in mathematical modeling of neuron growth. In this paper, we propose a novel phase field model with isogeometric collocation to simulate different stages of neuron growth by considering the effect of tubulin. The stages modeled include lamellipodia formation, initial neurite outgrowth, axon differentiation, and dendrite formation considering the effect of intracellular transport of tubulin on neurite outgrowth. Through comparison with experimental observations, we can demonstrate qualitatively and quantitatively similar reproduction of neuron morphologies at different stages of growth and allow extension towards the formation of neurite networks. 
    more » « less