skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparing Student and Sponsor Perceptions of Interdisciplinary Teams’ Capstone Performance
The purpose of this work is to investigate the relationship between the disciplinary diversity of capstone design teams and perceptions of success and engineering design abilities. Capstone design programs are effective environments for students to collaborate with industry sponsors on authentic design problems. They provide students with the opportunity to hone their technical and professional skills, often in teams. Previous work has demonstrated that interdisciplinary teams outperform within-discipline teams on complex open-ended tasks, but struggle to communicate across disciplinary boundaries. They also report lower levels of team cohesion and satisfaction with final outcomes. The results of the mixed-methods study conducted with 58 capstone design teams for this paper indicate that team diversity may be inversely related to students’ beliefs in their abilities to construct a prototype. Preliminary qualitative analysis suggests that students tend to divide prototyping tasks based on disciplinary background and struggle to integrate design efforts for complex systems, particularly during later stage design.  more » « less
Award ID(s):
1916386
PAR ID:
10335621
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper reports on the initial implementation of a two student “tiger team” in an engineering capstone design class. A tiger team is a small group of individuals that covers a range of expertise and is assigned when challenges arise that helps address the root issues causing the challenge. The term was coined in the 1960’s in the Cold War; tiger teams are used in industry, government, and military organizations. While tiger teams in these situations are usually formed around an issue then disbanded, in the capstone class the tiger team was formed for the duration of the two semester long class; details on formation and the larger context and organization of the class are discussed in the paper. The rationale for the tiger team was the observation over many years of a capstone class that as projects are functionally decomposed and subsystems assigned to individual students, a not insignificant fraction of students become “stuck” at some point in time – the concept of “stuckness” is further derived in the full paper. The result is that if delays accumulate on critical parts of the project, teams often struggle to get the project back on track and end up with a cascading series of missed deadlines. The rationale for the tiger team is to help teams identify when parts of the project are getting behind schedule and to have additional, short-term help available. In the initial implementation described here, the tiger team was two students—one from electrical and one from computer engineering—who volunteered for the position and were confirmed in that role by the other students in the class. Initial data shows that during the problem identification phase of the project the tiger team attended team meetings, helped evaluation project milestone reviews, worked to solve individual and team issues, and regularly met with the faculty. Early in the semester the two tiger team students described their role as unclear and worried their technical exposure would be limited. Later, as the teams developed technical representations, the tiger team provided independent feedback and addressed multiple technical challenges. Finally, as teams started to build technical prototypes the tiger team role again shifted to helping individuals with specific aspects of their project; this role continued throughout the remainder of the year-long course. This in-depth case-study of the experience of implementing a tiger team draws on observations from students, faculty, the tiger team members, and an external ethnographer. This work may help other capstone instructors who may be considering similar interventions. 
    more » « less
  2. This work in progress paper presents a study that follows four engineering capstone teams over the course of their two-year projects. Students on four different teams collected ethnographic and autoethnographic data in the form of field notes to explore how students learn across a variety of projects that vary in their scope, type, and team composition. This paper aims to explain the impacts that role rigidity and project management style have on the design process and discuss the factors that influence the types of learning occurring in capstone teams. Data suggest that project scope, role rigidity, and the level of ambiguity in the project impact the learning processes employed by different teams, and the skills that team members developed. 
    more » « less
  3. Background: Because of prior experience solving well-structured problems that have single, correct answers, students often struggle to direct their own design work and may not understand the need to frame ill-structured design problems. Purpose: Framing agency—defined as making decisions that are consequential to framing design problems and learning through this process—sheds light on students’ treatment of design problems; by framing, we mean the various actions designers take to understand, define, and bound the problem. Using the construct framing agency, we sought to characterize design team discourse to detect whether students treated design problems as ill- or well-structured and examine the consequences of this treatment. Method: Data were collected through extended participant observation of a capstone design course in a biomedical engineering program at a large research university. Data included audio and video records of design team meetings over the course of framing and solving industry-sponsored problems. For this paper, we analyzed three cases using sociolinguistic content analysis to characterize framing agency and compared the cases to illuminate the nuances of framing agency. Results: All teams faced impasses; one team navigated the impasse by framing the problem, whereas the others treated the problem as given. We identified markers of agency in students’ discourse, including tentative language, personal pronouns, and sharing ownership. Conclusions: Framing agency clarifies the kinds of learning experiences students need in order to overcome past experiences dominated by solving archetypical well-structured problems with predetermined solutions. 
    more » « less
  4. Team building activities are popular interventions during early stages of team development. At RIT, in the multidisciplinary capstone course with an average cohort size of around 350, the students on a particular capstone project team may not be mutually acquainted and thus may benefit from such team building activities. Prior literature has studied the effectiveness of various instructor-directed team building activities on student teams. However, our students are generally eager to spend class time working on their projects and often see in-class activities as a distraction rather than an important part of their growth. Instead, the student teams are now allowed to choose an intervention based on team consensus. In this paper, the relationship between attributes of the chosen intervention and student performance, as measured using a series of AACU VALUE rubrics, was studied using statistical measures. The analysis revealed a statistically significant effect of type of team building activity on teamwork, oral communication, and design & problem solving scores of individual students on the team. Also, a statistically significant effect of location of team building activity (on or off campus) on design & problem solving score was observed. 
    more » « less
  5. null (Ed.)
    At the start of their work for the National Science Foundation’s Revolutionizing Engineering Departments (RED) Program (IUSE/Professional Formation of Engineers, NSF 19-614), RED teams face a variety of challenges. Not only must they craft a shared vision for their projects and create strategic partnerships across their campuses to move the project forward, they must also form a new team and communicate effectively within the team. Our work with RED teams over the past 5 years has highlighted the common challenges these teams face at the start, and for that reason, we have developed the RED Start Up Session, a ½ day workshop that establishes best practices for RED teams’ work and allows for early successes in these five year projects. As the RED Participatory Action Research team (REDPAR)--comprised of individuals from Rose-Hulman Institute of Technology and the University of Washington--we have taken the research data collected as we work with RED teams and translated it into practical strategies that can benefit RED teams as they embark on their projects. This presentation will focus on the content and organization of the Start Up Session and how these lessons learned can contribute to the furthering of the goals of the RED program: to design “revolutionary new approaches to engineering education,” focusing on “organizational and cultural change within the departments, involving students, faculty, staff, and industry in rethinking what it means to provide an engineering program.” We see the Start Up Session as an important first step in the RED team establishing an identity as a team and learning how to work effectively together. We also encourage new RED teams to learn from the past, through a panel discussion with current RED team members who fill various roles on the teams: engineering education researcher, project manager, project PI, disciplinary faculty, social scientist, and others. By presenting our findings from the Start Up Session at ASEE, we believe we can contribute to the national conversation regarding change in engineering education as it is evidenced in the RED team’s work. 
    more » « less