skip to main content


Title: Yeasts from temperate forests
Abstract

Yeasts are ubiquitous in temperate forests. While this broad habitat is well‐defined, the yeasts inhabiting it and their life cycles, niches, and contributions to ecosystem functioning are less understood. Yeasts are present on nearly all sampled substrates in temperate forests worldwide. They associate with soils, macroorganisms, and other habitats and no doubt contribute to broader ecosystem‐wide processes. Researchers have gathered information leading to hypotheses about yeasts' niches and their life cycles based on physiological observations in the laboratory as well as genomic analyses, but the challenge remains to test these hypotheses in the forests themselves. Here, we summarize the habitat and global patterns of yeast diversity, give some information on a handful of well‐studied temperate forest yeast genera, discuss the various strategies to isolate forest yeasts, and explain temperate forest yeasts' contributions to biotechnology. We close with a summary of the many future directions and outstanding questions facing researchers in temperate forest yeast ecology. Yeasts present an exciting opportunity to better understand the hidden world of microbial ecology in this threatened and global habitat.

 
more » « less
Award ID(s):
2110403 1442148
NSF-PAR ID:
10363785
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Yeast
Volume:
39
Issue:
1-2
ISSN:
0749-503X
Page Range / eLocation ID:
p. 4-24
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Degree of canopy cover is linked to transpiration, carbon cycling and primary productivity of an ecosystem. In modern ecology, canopy structure is often quantified as Leaf Area Index (LAI), which is the amount of overstory leaf coverage relative to ground area. Although a key aspect of vegetation, the degree of canopy cover has proven difficult to reconstruct in deep time. One method, Reconstructed Leaf Area Index (rLAI), was developed to infer canopy structure using the relationship between non-grass leaf epidermal phytolith (plant biosilica) morphology, and leaf coverage in modern forests. This method leverages the observed correlation between epidermal phytolith size, shape (margin undulation), and light availability. When more light is available in a canopy, epidermal phytoliths tend to be smaller and less undulate, whereas less light availability is linked to larger and more undulate epidermal phytoliths. However, the calibration set used to develop this method was compiled from field sites and samples from localities in Costa Rica and it remains unclear how applicable it is to temperate North American fossil sites due to lack of data from relevant vegetation types and taxonomic differences between plant communities in the Neotropics vs. mid-latitude North America. For example, preliminary results measuring rLAI in phytolith assemblages from the Miocene of the North American Great Plains have yielded surprisingly high degrees of canopy density despite containing high relative abundances of open-habitat grasses. To test whether vegetational and taxonomic differences impact the calibration set, we constructed a new North American calibration using 24 quadrats from six sites, representing reasonable modern analogs for Miocene vegetation in eastern North America. Specifically, we sampled in Bennett Springs State Park in Lebanon, MO; Mark Twain National Forest in Rolla, MO; Tellico in Franklin, NC and Congaree National Park in Hopkins, SC. All sites include a range of canopy covers and vegetation types, from oak savannas and oak woodlands to mixed hardwood forests, pine savannas, and old growth bottomland forests. From each quadrat, we collected a soil sample and took hemispherical photos of the local canopy. From modern soil samples, biosilica was extracted in the lab, yielding phytolith assemblages which were scanned for epidermal phytoliths using a compound microscope. Recovered epidermal phytoliths size and margin undulation were measured and assemblage averages were used to predict measured LAI at each quadrat. Hemispherical photographs were processed using the software Gap Light Analyzer to obtain LAI values. We hypothesize there will be a linear relationship between actual LAI and LAI calculated from epidermal phytolith morphology, but its relationship will differ from that found in South America. Results will be used to reevaluate canopy coverage in sites within the Great Plains Miocene as well as applied to Pacific Northwest Miocene sites, both to understand changes to vegetation during global climatic events in their respective regions. 
    more » « less
  2. Abstract Aim

    Climate and disturbance alter forest dynamics, from individual trees to biomes and from years to millennia, leaving legacies that vary with local, meso‐ and macroscales. Motivated by recent insights in temperate forests, we argue that temporal and spatial extents equivalent to that of the underlying drivers are necessary to characterize forest dynamics across scales. We focus specifically on characterizing mesoscale forest dynamics because they bridge fine‐scale (local) processes and the continental scale (macrosystems) in ways that are highly relevant for climate change science and ecosystem management. We revisit ecological concepts related to spatial and temporal scales and discuss approaches to gain a better understanding of climate–forest dynamics across scales.

    Location

    Eastern USA.

    Time period

    Last century to present.

    Major taxa studied

    Temperate broadleaf forests.

    Methods

    We review regional literature of past tree mortality studies associated with climate to identify mesoscale climate‐driven disturbance events. Using a dynamic vegetation model, we then simulate how these forests respond to a typical climate‐driven disturbance.

    Results

    By identifying compound disturbance events from both a literature review and simulation modelling, we find that synchronous patterns of drought‐driven mortality at mesoscales have been overlooked within these forests.

    Main conclusions

    As ecologists, land managers and policy‐makers consider the intertwined drivers of climate and disturbance, a focus on spatio‐temporal scales equivalent to those of the drivers will provide insight into long‐term forest change, such as drought impacts. Spatially extensive studies should also have a long temporal scale to provide insight into pathways for forest change, evaluate predictions from dynamic forest models and inform development of global vegetation models. We recommend integrating data collected from spatially well‐replicated networks (e.g., archaeological, historical or palaeoecological data), consisting of centuries‐long, high‐resolution records, with models to characterize better the mesoscale response of forests to climate change in the past and in the future.

     
    more » « less
  3. Abstract

    In the context of global decline in old‐growth forest, historical ecology is a valuable tool to derive insights into vegetation legacies and dynamics and develop new conservation and restoration strategies. In this cross‐disciplinary study, we integrate palynology (Lago del Pesce record), history, dendrochronology, and historical and contemporary land cover maps to assess drivers of vegetation change over the last millennium in a Mediterranean mountain forest (Pollino National Park, southern Italy) and discuss implications in conservation ecology. The study site hosts a remnant beech–fir (Fagus sylvaticaAbies alba) mixed forest, a priority habitat for biodiversity conservation in Europe. In the 10th century, the pollen record showed an open environment that was quickly colonized by silver fir when sociopolitical instabilities reduced anthropogenic pressures in mountain forests. The highest forest cover and biomass was reached between the 14th and the 17th centuries following land abandonment due to recurring plague pandemics. This rewilding process is also reflected in the recruitment history of Bosnian pine (Pinus heldreichii) in the subalpine elevation belt. Our results show that human impacts have been one of the main drivers of silver fir population contraction in the last centuries in the Mediterranean, and that the removal of direct human pressure led to ecosystem renovation. Since 1910, the Rubbio State Forest has locally protected and restored the mixed beech–fir forest. The institutions in 1972 for the Rubbio Natural Reserve and in 1993 for Pollino National Park have guaranteed the survival of the silver fir population, demonstrating the effectiveness of targeted conservation and restoration policies despite a warming climate. Monitoring silver fir populations can measure the effectiveness of conservation measures. In the last decades, the abandonment of rural environments (rewilding) along the mountains of southern Italy has reduced the pressure on ecosystems, thus boosting forest expansion. However, after four decades of natural regeneration and increasing biomass, pollen influx and forest composition are still far from the natural attributes of the medieval forest ecosystem. We conclude that long‐term forest planning encouraging limited direct human disturbance will lead toward rewilding and renovation of carbon‐rich and highly biodiverse Mediterranean old‐growth forests, which will be more resistant and resilient to future climate change.

     
    more » « less
  4. Abstract

    Understanding habitat quality is central to understanding the distributions of species on the landscape, as well as to conserving and restoring at‐risk species. Although it is well known that many species require different resources throughout their life cycles, pollinator conservation efforts focus almost exclusively on forage resources. In this study, we evaluate nesting habitat for bumble bees by locating nests directly on the landscape. We compared colony density and colony reproductive output forBombus impatiens, the common eastern bumble bee, across three different land cover types (hay fields, meadows, and forests). We also assessed nesting habitat associations for allBombusnests located during surveys to tease apart species‐specific patterns of habitat use. We found thatB. impatiensnested under the ground in two natural land cover types, forests, and meadows, but found noB. impatiensnests in hay fields. ThoughB. impatiensnested at similar densities in both meadows and forests, colonies in forests had much higher reproductive output. In contrast,B. griseocollistended to nest on the surface of the ground and was almost always found in meadows.B. perplexiswas the only species to nest in all three habitat types, including hay fields. For some bumble bee species in this system, meadows, the habitat type with abundant forage resources, may be sufficient to maintain them throughout their life cycles. However,B. impatiensmight benefit from heterogeneous landscapes with forests and meadows. Results forB. impatiensemphasize the longstanding notion that habitat use is not always positively correlated with habitat quality (as measured by reproductive output). Our results also show that habitat selection by bumble bees at one spatial scale may be influenced by resources at other scales. Finally, we demonstrate the feasibility of direct nest searches for understanding bumble bee distribution and ecology.

     
    more » « less
  5. Abstract

    In fluctuating lake ecosystems, the severity of anthropogenic disturbance is often difficult to assess because the magnitude of natural dynamics rivals or surpasses that of ecosystem alteration due to human impact. Consequently, it is also difficult to evaluate the resilience of these ecosystems' plant and animal communities to that impact. Unfortunately, lake ecosystem response to natural cycles of lake‐level and salinity fluctuation at multi‐annual time scales is poorly understood, due to complex relationships between hydrological dynamics and the local availability or distribution of ecological niches. We present a 1650‐yr‐long paleoecological record from Lake Naivasha in Kenya (East Africa) which traces community assembly and turnover in two prominent groups of benthic invertebrates (chironomids and ostracods) in response to a climate‐driven sequence of 10 major lake‐level fluctuations. Over this time period, lake depth (inferred from sedimentology) fluctuated between ~3 and >35 m, and salinity (inferred from fossil diatom assemblages) varied between ~100 and ~23,500 µS/cm. Prior to ~780 yr ago, the unique community response to salinity was stronger than to lake depth. Around that time the lake transitioned to a more open hydrology, relatively stable freshwater conditions and greater prevalence of macrophyte‐associated benthic habitat, so that community response to variations in lake depth (and surface area) became stronger. Notably, major community restructuring in the course of this transition was not synchronous between the two groups, because it depended on the proliferation of key freshwater species in each group. Our results imply that (1) climate‐sensitive lake ecosystems are more likely controlled by salinity change if both its amplitude and frequency are large enough to induce ecological species sorting; (2) community response to such salinity changes may be predictable, and likely to show coherence across different groups of aquatic biota; and (3) the timing of major community restructuring strongly depends on the ecology of key species, and whether the species sorting is driven by salinity change itself or indirectly by the salinity‐dependent availability of ecological niches.

     
    more » « less