skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Closed microbial communities self-organize to persistently cycle carbon
Cycles of nutrients (N, P, etc.) and resources (C) are a defining emergent feature of ecosystems. Cycling plays a critical role in determining ecosystem structure at all scales, from microbial communities to the entire biosphere. Stable cycles are essential for ecosystem persistence because they allow resources and nutrients to be regenerated. Therefore, a central problem in ecology is understanding how ecosystems are organized to sustain robust cycles. Addressing this problem quantitatively has proved challenging because of the difficulties associated with manipulating ecosystem structure while measuring cycling. We address this problem using closed microbial ecosystems (CES), hermetically sealed microbial consortia provided with only light. We develop a technique for quantifying carbon cycling in hermetically sealed microbial communities and show that CES composed of an alga and diverse bacterial consortia self-organize to robustly cycle carbon for months. Comparing replicates of diverse CES, we find that carbon cycling does not depend strongly on the taxonomy of the bacteria present. Moreover, despite strong taxonomic differences, self-organized CES exhibit a conserved set of metabolic capabilities. Therefore, an emergent carbon cycle enforces metabolic but not taxonomic constraints on ecosystem organization. Our study helps establish closed microbial communities as model ecosystems to study emergent function and persistence in replicate systems while controlling community composition and the environment.  more » « less
Award ID(s):
2117477
PAR ID:
10335749
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
45
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Our planet is a self-sustaining ecosystem powered by light energy from the sun, but roughly closed to matter. Many ecosystems on Earth are also approximately closed to matter and recycle nutrients by self-organizing stable nutrient cycles, e.g., microbial mats, lakes, open ocean gyres. However, existing ecological models do not exhibit the self-organization and dynamical stability widely observed in such planetary-scale ecosystems. Here, we advance a conceptual model that explains the self-organization, stability, and emergent features of closed microbial ecosystems. Our model incorporates the bioenergetics of metabolism into an ecological framework. By studying this model, we uncover a crucial thermodynamic feedback loop that enables metabolically diverse communities to almost always stabilize nutrient cycles. Surprisingly, highly diverse communities self-organize to extract 10 % of the maximum extractable energy, or 100 fold more than randomized communities. Further, with increasing diversity, distinct ecosystems show strongly correlated fluxes through nutrient cycles. However, as the driving force from light increases, the fluxes of nutrient cycles become more variable and species-dependent. Our results highlight that self-organization promotes the efficiency and stability of complex ecosystems at extracting energy from the environment, even in the absence of any centralized coordination. 
    more » « less
  2. Ocean microbial communities are made up of thousands of diverse taxa whose metabolic demands set the rates of both biomass production and degradation. Thus, these microscopic organisms play a critical role in ecosystem dynamics, global carbon cycling, and climate. While we have frameworks for relating phytoplankton diversity to rates of carbon fixation, our knowledge of how variations in heterotrophic microbial populations drive changes in carbon cycling is in its infancy. Here, we leverage global metagenomic datasets and metabolic models to identify a set of metabolic niches with distinct growth strategies. These groupings provide a simplifying framework for describing microbial communities in different oceanographic regions and for understanding how heterotrophic microbial populations function. This framework, predicated directly on metabolic capability rather than taxonomy, enables us to tractably link heterotrophic diversity directly to biogeochemical rates in large scale ecosystem models. 
    more » « less
  3. Abstract Restoring ecosystems requires the re-establishment of diverse soil microbial communities that drive critical ecosystem functions. In grasslands, restoration and management require the application of disturbances like fire and grazing. Disturbances can shape microbial taxonomic composition and potentially functional composition as well. We characterized taxonomic and functional gene composition of soil communities using whole genome shotgun metagenomic sequencing to determine how restored soil communities differed from pre-restoration agricultural soils and original remnant soils, how management affects soil microbes, and whether restoration and management affect the number of microbial genes associated with carbohydrate degradation. We found distinct differences in both taxonomic and functional diversity and composition among restored, remnant, and agricultural soils. Remnant soils had low taxonomic and functional richness and diversity, as well as distinct composition, indicating that restoration of agricultural soils does not re-create soil microbial communities that match remnants. Prescribed fire management increased functional diversity, which also was higher in more recently planted restorations. Finally, restored and post-fire soils included high abundances of genes encoding cellulose-degrading enzymes, so restorations and their ongoing management can potentially support functions important in carbon cycling. 
    more » « less
  4. NA (Ed.)
    The metabolic activity of microbial communities plays a primary role in the flow of essential nutrients throughout the biosphere. Molecular genetics has revealed the metabolic pathways that model organisms utilize to generate energy and biomass, but we understand little about how the metabolism of diverse, natural communities emerges from the collective action of its constituents. We propose that quantifying and mapping metabolic fluxes to sequencing measurements of genomic, taxonomic, or transcriptional variation across an ensemble of diverse communities, either in the laboratory or in the wild, can reveal low-dimensional descriptions of community structure that can explain or predict their emergent metabolic activity. We survey the types of communities for which this approach might be best suited, review the analytical techniques available for quantifying metabolite fluxes in communities, and discuss what types of data analysis ap- proaches might be lucrative for learning the structure-function mapping in com- munities from these data. 
    more » « less
  5. Russel, JA (Ed.)
    Understanding microbial roles in ecosystem function requires integrating microscopic processes into food webs. The carnivorous pitcher plant, Sarracenia purpurea, offers a tractable study system where diverse food webs of macroinvertebrates and microbes facilitate digestion of captured insect prey, releasing nutrients supporting the food web and host plant. However, how interactions between these macroinvertebrate and microbial communities contribute to ecosystem functions remains unclear. We examined the role of the pitcher plant mosquito, Wyeomyia smithii, in top-down control of the composition and function of pitcher plant microbial communities. Mosquito larval abundance was enriched or depleted across a natural population of S. purpurea pitchers over a 74-day field experiment. Bacterial community composition and microbial community function were characterized by 16S rRNA amplicon sequencing and profiling of carbon substrate use, bulk metabolic rate, hydrolytic enzyme activity, and macronutrient pools. Bacterial communities changed from pitcher opening to maturation, but larvae exerted minor effects on high-level taxonomic composition. Higher larval abundance was associated with lower diversity communities with distinct functions and elevated nitrogen availability. Treatment-independent clustering also supported roles for larvae in curating pitcher microbial communities through shifts in community diversity and function. These results demonstrate top-down control of microbial functions in an aquatic microecosystem. 
    more » « less