skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Asymmetric Molecular Dynamics and Anisotropic Phase Separation in the Cocrystal of the Crystalline/Crystalline Polymer Blend
Award ID(s):
2004393 1708999
PAR ID:
10335848
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
ACS Macro Letters
Volume:
11
Issue:
2
ISSN:
2161-1653
Page Range / eLocation ID:
193 to 198
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Random quantum circuits continue to inspire a wide range of applications in quantum information science and many-body quantum physics, while remaining analytically tractable through probabilistic methods. Motivated by an interest in deterministic circuits with similar applications, we construct classes of nonrandom unitary Clifford circuits by imposing translation invariance in both time and space. Further imposing dual unitarity, our circuits effectively become crystalline spacetime lattices whose vertices are swap or iswap two-qubit gates and whose edges may contain one-qubit gates. One can then require invariance under (subgroups of) the crystal’s point group. Working on the square and kagome lattices, we use the formalism of Clifford quantum cellular automata to describe operator spreading, entanglement generation, and recurrence times of these circuits. A full classification on the square lattice reveals, of particular interest, a “nonfractal good scrambling class” with dense operator spreading that generates codes with linear contiguous code distance and high performance under erasure errors at the end of the circuit. We also break unitarity by adding spacetime translation-invariant measurements and find a class of such circuits with fractal dynamics. 
    more » « less
  2. null (Ed.)