skip to main content

This content will become publicly available on July 1, 2023

Title: 4. Online Algorithms with Multiple Predictions
A popular line of recent research incorporates ML advice in the design of online algorithms to improve their performance in typical instances. These papers treat the ML algorithm as a blackbox, and redesign online algorithms to take advantage of ML predictions. In this paper, we ask the complementary question: can we redesign ML algorithms to provide better predictions for online algorithms? We explore this question in the context of the classic rent-or-buy problem, and show that incorporating optimization benchmarks directly in ML loss functions leads to significantly better performance, while maintaining a worst-case adversarial result when the advice is completely wrong. We support this finding both through theoretical bounds and numerical simulations, and posit that “learning for optimization” is a fertile area for future research.
Authors:
; ; ;
Award ID(s):
1845171 2031849 1704656
Publication Date:
NSF-PAR ID:
10335915
Journal Name:
The Thirty-ninth International Conference on Machine Learning (ICML 2022)
Sponsoring Org:
National Science Foundation
More Like this
  1. A popular line of recent research incorporates ML advice in the design of online algorithms to improve their performance in typical instances. These papers treat the ML algorithm as a blackbox, and redesign online algorithms to take advantage of ML predictions. In this paper, we ask the complementary question: can we redesign ML algorithms to provide better predictions for online algorithms? We explore this question in the context of the classic rent-or-buy problem, and show that incorporating optimization benchmarks directly in ML loss functions leads to significantly better performance, while maintaining a worst-case adversarial result when the advice is completely wrong. We support this finding both through theoretical bounds and numerical simulations, and posit that “learning for optimization” is a fertile area for future research.
  2. We study online convex optimization with switching costs, a practically important but also extremely challenging problem due to the lack of complete offline information. By tapping into the power of machine learning (ML) based optimizers, ML-augmented online algorithms (also referred to as expert calibration in this paper) have been emerging as state of the art, with provable worst-case performance guarantees. Nonetheless, by using the standard practice of training an ML model as a standalone optimizer and plugging it into an ML-augmented algorithm, the average cost performance can be highly unsatisfactory. In order to address the "how to learn" challenge, we propose EC-L2O (expert-calibrated learning to optimize), which trains an ML-based optimizer by explicitly taking into account the downstream expert calibrator. To accomplish this, we propose a new differentiable expert calibrator that generalizes regularized online balanced descent and offers a provably better competitive ratio than pure ML predictions when the prediction error is large. For training, our loss function is a weighted sum of two different losses --- one minimizing the average ML prediction error for better robustness, and the other one minimizing the post-calibration average cost. We also provide theoretical analysis for EC-L2O, highlighting that expert calibration can be evenmore »beneficial for the average cost performance and that the high-percentile tail ratio of the cost achieved by EC-L2O to that of the offline optimal oracle (i.e., tail cost ratio) can be bounded. Finally, we test EC-L2O by running simulations for sustainable datacenter demand response. Our results demonstrate that EC-L2O can empirically achieve a lower average cost as well as a lower competitive ratio than the existing baseline algorithms.« less
  3. This paper studies the online energy scheduling problem in a hybrid model where the cost of energy is proportional to both the volume and peak usage, and where energy can be either locally generated or drawn from the grid. Inspired by recent advances in online algorithms with Machine Learned (ML) advice, we develop parameterized deterministic and randomized algorithms for this problem such that the level of reliance on the advice can be adjusted by a trust parameter. We then analyze the performance of the proposed algorithms using two performance metrics: textit{robustness} that measures the competitive ratio as a function of the trust parameter when the advice is inaccurate, and textit{consistency} for competitive ratio when the advice is accurate. Since the competitive ratio is analyzed in two different regimes, we further investigate the Pareto optimality of the proposed algorithms. Our results show that the proposed deterministic algorithm is Pareto-optimal, in the sense that no other online deterministic algorithms can dominate the robustness and consistency of our algorithm. Furthermore, we show that the proposed randomized algorithm dominates the Pareto-optimal deterministic algorithm. Our large-scale empirical evaluations using real traces of energy demand, energy prices, and renewable energy generations highlight that the proposed algorithmsmore »outperform algorithms optimized for worst-case and fully data-driven algorithms.« less
  4. null (Ed.)
    This paper studies the online energy scheduling problem in a hy- brid model where the cost of energy is proportional to both the volume and peak usage, and where energy can be either locally generated or drawn from the grid. Inspired by recent advances in online algorithms with Machine Learned (ML) advice, we develop parameterized deterministic and randomized algorithms for this problem such that the level of reliance on the advice can be adjusted by a trust parameter. We then analyze the performance of the pro- posed algorithms using two performance metrics: robustness that measures the competitive ratio as a function of the trust parameter when the advice is inaccurate, and consistency for competitive ratio when the advice is accurate. Since the competitive ratio is analyzed in two different regimes, we further investigate the Pareto optimal- ity of the proposed algorithms. Our results show that the proposed deterministic algorithm is Pareto-optimal, in the sense that no other online deterministic algorithms can dominate the robustness and consistency of our algorithm. Furthermore, we show that the proposed randomized algorithm dominates the Pareto-optimal de- terministic algorithm. Our large-scale empirical evaluations using real traces of energy demand, energy prices, and renewable energy generations highlightmore »that the proposed algorithms outperform worst-case optimized algorithms and fully data-driven algorithms.« less
  5. This paper studies the online energy scheduling problem in a hybrid model where the cost of energy is proportional to both the volume and peak usage, and where energy can be either locally generated or drawn from the grid. Inspired by recent advances in online algorithms with Machine Learned (ML) advice, we develop parameterized deterministic and randomized algorithms for this problem such that the level of reliance on the advice can be adjusted by a trust parameter. We then analyze the performance of the proposed algorithms using two performance metrics: robustness that measures the competitive ratio as a function of the trust parameter when the advice is inaccurate, and consistency for competitive ratio when the advice is accurate. Since the competitive ratio is analyzed in two different regimes, we further investigate the Pareto optimality of the proposed algorithms. Our results show that the proposed deterministic algorithm is Pareto-optimal, in the sense that no other online deterministic algorithms can dominate the robustness and consistency of our algorithm. Furthermore, we show that the proposed randomized algorithm dominates the Pareto-optimal deterministic algorithm. Our large-scale empirical evaluations using real traces of energy demand, energy prices, and renewable energy generations highlight that the proposed algorithmsmore »outperform worst-case optimized algorithms and fully data-driven algorithms.« less