- PAR ID:
- 10335918
- Date Published:
- Journal Name:
- Biotechnology for Biofuels and Bioproducts
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2731-3654
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
This study reports the findings of three independent microbial resource management-based strategies to manage dissolved methane (D-CH4) gas in anaerobic effluents. In the first approach, an aerobic methanotroph Methylococcus capsulatus was immobilized. A maximum of 1.75 kg COD m−3 d−1 at a hydraulic retention time of 0.5 h was recorded in the attached growth aerobic methane oxidizing reactor. In the second strategy, denitrifying methane oxidizing organisms (DAMO) were first enriched in a lab-scale batch reactor which enabled a maximum methane oxidation rate of 0.31 kg COD m−3 d−1. In the last strategy, a mixed community of aerobic ammonia oxidizers was immobilized on sponge carriers and used to convert the D-CH4 gas into useful biofuel methanol at a rate of 0.73 kg COD m−3 d−1 equivalent of COD with a methanol production of 31.5 g COD m−3 d−1. On a COD basis, the amount of methanol generated could denitrify nearly 7 mg L−1 of NO3-N.more » « less
-
Rotaru, Amelia-Elena (Ed.)ABSTRACT Novel bacterial isolates with the capabilities of lignin depolymerization, catabolism, or both, could be pertinent to lignocellulosic biofuel applications. In this study, we aimed to identify anaerobic bacteria that could address the economic challenges faced with microbial-mediated biotechnologies, such as the need for aeration and mixing. Using a consortium seeded from temperate forest soil and enriched under anoxic conditions with organosolv lignin as the sole carbon source, we successfully isolated a novel bacterium, designated 159R. Based on the 16S rRNA gene, the isolate belongs to the genus Sodalis in the family Bruguierivoracaceae . Whole-genome sequencing revealed a genome size of 6.38 Mbp and a GC content of 55 mol%. To resolve the phylogenetic position of 159R, its phylogeny was reconstructed using (i) 16S rRNA genes of its closest relatives, (ii) multilocus sequence analysis (MLSA) of 100 genes, (iii) 49 clusters of orthologous groups (COG) domains, and (iv) 400 conserved proteins. Isolate 159R was closely related to the deadwood associated Sodalis guild rather than the tsetse fly and other insect endosymbiont guilds. Estimated genome-sequence-based digital DNA-DNA hybridization (dDDH), genome percentage of conserved proteins (POCP), and an alignment analysis between 159R and the Sodalis clade species further supported that isolate 159R was part of the Sodalis genus and a strain of Sodalis ligni . We proposed the name Sodalis ligni str. 159R (=DSM 110549 = ATCC TSD-177). IMPORTANCE Currently, in the paper industry, paper mill pulping relies on unsustainable and costly processes to remove lignin from lignocellulosic material. A greener approach is biopulping, which uses microbes and their enzymes to break down lignin. However, there are limitations to biopulping that prevent it from outcompeting other pulping processes, such as requiring constant aeration and mixing. Anaerobic bacteria are a promising alternative source for consolidated depolymerization of lignin and its conversion to valuable by-products. We presented Sodalis ligni str. 159R and its characteristics as another example of potential mechanisms that can be developed for lignocellulosic applications.more » « less
-
Strik, David (Ed.)
The liquid residue resulting from various agroindustrial processes is both rich in organic material and an attractive source to produce a variety of chemicals. Using microbial communities to produce chemicals from these liquid residues is an active area of research, but it is unclear how to deploy microbial communities to produce specific products from the different agroindustrial residues. To address this, we fed anaerobic bioreactors one of several agroindustrial residues (carbohydrate-rich lignocellulosic fermentation conversion residue, xylose, dairy manure hydrolysate, ultra-filtered milk permeate, and thin stillage from a starch bioethanol plant) and inoculated them with a microbial community from an acid-phase digester operated at the wastewater treatment plant in Madison, WI, United States. The bioreactors were monitored over a period of months and sampled to assess microbial community composition and extracellular fermentation products. We obtained metagenome assembled genomes (MAGs) from the microbial communities in each bioreactor and performed comparative genomic analyses to identify common microorganisms, as well as any community members that were unique to each reactor. Collectively, we obtained a dataset of 217 non-redundant MAGs from these bioreactors. This metagenome assembled genome dataset was used to evaluate whether a specific microbial ecology model in which medium chain fatty acids (MCFAs) are simultaneously produced from intermediate products (e.g., lactic acid) and carbohydrates could be applicable to all fermentation systems, regardless of the feedstock. MAGs were classified using a multiclass classification machine learning algorithm into three groups, organisms fermenting the carbohydrates to intermediate products, organisms utilizing the intermediate products to produce MCFAs, and organisms producing MCFAs directly from carbohydrates. This analysis revealed common biological functions among the microbial communities in different bioreactors, and although different microorganisms were enriched depending on the agroindustrial residue tested, the results supported the conclusion that the microbial ecology model tested was appropriate to explain the MCFA production potential from all agricultural residues.
-
Townsend, Jeffrey (Ed.)Abstract Xylose is the second most abundant monomeric sugar in plant biomass. Consequently, xylose catabolism is an ecologically important trait for saprotrophic organisms, as well as a fundamentally important trait for industries that hope to convert plant mass to renewable fuels and other bioproducts using microbial metabolism. Although common across fungi, xylose catabolism is rare within Saccharomycotina, the subphylum that contains most industrially relevant fermentative yeast species. The genomes of several yeasts unable to consume xylose have been previously reported to contain the full set of genes in the XYL pathway, suggesting the absence of a gene–trait correlation for xylose metabolism. Here, we measured growth on xylose and systematically identified XYL pathway orthologs across the genomes of 332 budding yeast species. Although the XYL pathway coevolved with xylose metabolism, we found that pathway presence only predicted xylose catabolism about half of the time, demonstrating that a complete XYL pathway is necessary, but not sufficient, for xylose catabolism. We also found that XYL1 copy number was positively correlated, after phylogenetic correction, with xylose utilization. We then quantified codon usage bias of XYL genes and found that XYL3 codon optimization was significantly higher, after phylogenetic correction, in species able to consume xylose. Finally, we showed that codon optimization of XYL2 was positively correlated, after phylogenetic correction, with growth rates in xylose medium. We conclude that gene content alone is a weak predictor of xylose metabolism and that using codon optimization enhances the prediction of xylose metabolism from yeast genome sequence data.more » « less
-
Summary In contrast to the current paradigm of using microbial mono‐cultures in most biotechnological applications, increasing efforts are being directed towards engineering mixed‐species consortia to perform functions that are difficult to programme into individual strains. In this work, we developed a synthetic microbial consortium composed of two genetically engineered microbes, a cyanobacterium (
Synechococcus elongatus PCC 7942) and a heterotrophic bacterium (Pseudomonas putida EM173). These microbial species specialize in the co‐culture: cyanobacteria fix CO2through photosynthetic metabolism and secrete sufficient carbohydrates to support the growth and active metabolism ofP. putida , which has been engineered to consume sucrose and to degrade the environmental pollutant 2,4‐dinitrotoluene (2,4‐DNT). By encapsulatingS. elongatus within a barium–alginate hydrogel, cyanobacterial cells were protected from the toxic effects of 2,4‐DNT, enhancing the performance of the co‐culture. The synthetic consortium was able to convert 2,4‐DNT with light and CO2as key inputs, and its catalytic performance was stable over time. Furthermore, cycling this synthetic consortium through low nitrogen medium promoted the sucrose‐dependent accumulation of polyhydroxyalkanoate, an added‐value biopolymer, in the engineeredP. putida strain. Altogether, the synthetic consortium displayed the capacity to remediate the industrial pollutant 2,4‐DNT while simultaneously synthesizing biopolymers using light and CO2as the primary inputs.