skip to main content


Title: Does a complex life cycle affect adaptation to environmental change? Genome-informed insights for characterizing selection across complex life cycle
Complex life cycles, in which discrete life stages of the same organism differ in form or function and often occupy different ecological niches, are common in nature. Because stages share the same genome, selective effects on one stage may have cascading consequences through the entire life cycle. Theoretical and empirical studies have not yet generated clear predictions about how life cycle complexity will influence patterns of adaptation in response to rapidly changing environments or tested theoretical predictions for fitness trade-offs (or lack thereof) across life stages. We discuss complex life cycle evolution and outline three hypotheses—ontogenetic decoupling, antagonistic ontogenetic pleiotropy and synergistic ontogenetic pleiotropy—for how selection may operate on organisms with complex life cycles. We suggest a within-generation experimental design that promises significant insight into composite selection across life cycle stages. As part of this design, we conducted simulations to determine the power needed to detect selection across a life cycle using a population genetic framework. This analysis demonstrated that recently published studies reporting within-generation selection were underpowered to detect small allele frequency changes (approx. 0.1). The power analysis indicates challenging but attainable sampling requirements for many systems, though plants and marine invertebrates with high fecundity are excellent systems for exploring how organisms with complex life cycles may adapt to climate change.  more » « less
Award ID(s):
1764316
NSF-PAR ID:
10335927
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
288
Issue:
1964
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Organisms with complex life cycles demonstrate a remarkable ability to change their phenotypes across development, presumably as an evolutionary adaptation to developmentally variable environments. Developmental variation in environmentally sensitive performance, and thermal sensitivity in particular, has been well documented in holometabolous insects. For example, thermal performance in adults and juvenile stages exhibit little genetic correlation (genetic decoupling) and can evolve independently, resulting in divergent thermal responses. Yet, we understand very little about how this genetic decoupling occurs. We tested the hypothesis that genetic decoupling of thermal physiology is driven by fundamental differences in physiology between life stages, despite a potentially conserved cellular stress response. We used RNAseq to compare transcript expression in response to a cold stressor in Drosophila melanogaster larvae and adults and used RNA interference (RNAi) to test whether knocking down nine target genes differentially affected larval and adult cold tolerance. Transcriptomic responses of whole larvae and adults during and following exposure to −5°C were largely unique both in identity of responding transcripts and in temporal dynamics. Further, we analyzed the tissue-specificity of differentially expressed transcripts from FlyAtlas 2 data, and concluded that stage-specific differences in transcription were not simply driven by differences in tissue composition. In addition, RNAi of target genes resulted in largely stage-specific and sometimes sex-specific effects on cold tolerance. The combined evidence suggests that thermal physiology is largely stage-specific at the level of gene expression, and thus natural selection may be acting on different loci during the independent thermal adaptation of different life stages. 
    more » « less
  2. null (Ed.)
    Interactions among selection, gene flow, and drift affect the trajectory of adaptive evolution. In natural populations, the direction and magnitude of these processes can be variable across different spatial, temporal, or ontogenetic scales. Consequently, variability in evolutionary processes affects the predictability or stochasticity of microevolutionary outcomes. We studied an intertidal fish, Bathygobius cocosensis (Bleeker, 1854), to understand how space, time, and life stage structure genetic and phenotypic variation in a species with potentially extensive dispersal and a complex life cycle (larval dispersal preceding benthic recruitment). We sampled juvenile and adult life stages, at three sites, over three years. Genome-wide SNPs uncovered a pattern of chaotic genetic patchiness, that is, weak-but-significant patchy spatial genetic structure that was variable through time and between life stages. Outlier locus analyses suggested that targets of spatially divergent selection were mostly temporally variable, though a significant number of spatial outlier loci were shared between life stages. Head shape, a putatively ecologically responsive (adaptive) phenotype in B. cocosensis also exhibited high temporal variability within sites. However, consistent spatial relationships between sites indicated that environmental similarities among sites may generate predictable phenotype distributions across space. Our study highlights the complex microevolutionary dynamics of marine systems, where consideration of multiple ecological dimensions can reveal both predictable and stochastic patterns in the distributions of genetic and phenotypic variation. Such considerations probably apply to species that possess short, complex life cycles, have large dispersal potential and fecundities, and that inhabit heterogeneous environments. 
    more » « less
  3. Abstract

    Organisms that undergo a shift in ontogeny and habitat type often change their spatial distribution throughout their life cycle, but how this affects population dynamics remains poorly understood.

    We examined spatial and temporal patterns inAedes nigripesabundance, a widespread univoltine Arctic mosquito species (Diptera: Culicidae), hypothesizing that the spatial distribution of adults would be closely tied to aquatic habitat.

    We tracked adult densities ofA. nigripesnear Kangerlussuaq, Greenland using emergence traps, CO2‐baited traps, and sweep‐nets.

    In back‐to‐back years of sampling (2017 and 2018) we found two‐fold variation in overall abundance.

    Adults were spatially patchy when first emerging from aquatic habitats but within a week, mean capture rates for host‐seeking adult females were similar across locations, even in places far from larval habitat.

    Daily variation in mosquito captures was primarily explained by weather, with virtually no mosquito activity when temperatures averaged less than 8°C or wind speeds exceeded 6 m/s. Gravid females (3% of resting adults) were spatially patchy on the landscape, but not always in the same places where most adults emerged.

    The spatial distribution of adults is quickly uncoupled from the spatial distribution of larvae becauseA. nigripesfemales may disperse far from their natal habitats in search of a blood‐meal and high‐quality oviposition habitat.

    8. This research highlights the value of studying ecological processes that act at disparate life stages for understanding the population biology of organisms with complex life cycles.

     
    more » « less
  4. Synopsis New biophysical theory and electronic databases raise the prospect of deriving fundamental rules of life, a conceptual framework for how the structures and functions of molecules, cells, and individual organisms give rise to emergent patterns and processes of ecology, evolution, and biodiversity. This framework is very general, applying across taxa of animals from 10–10 g protists to 108 g whales, and across environments from deserts and abyssal depths to rain forests and coral reefs. It has several hallmarks: (1) Energy is the ultimate limiting resource for organisms and the currency of biological fitness. (2) Most organisms are nearly equally fit, because in each generation at steady state they transfer an equal quantity of energy (˜22.4 kJ/g) and biomass (˜1 g/g) to surviving offspring. This is the equal fitness paradigm (EFP). (3) The enormous diversity of life histories is due largely to variation in metabolic rates (e.g., energy uptake and expenditure via assimilation, respiration, and production) and biological times (e.g., generation time). As in standard allometric and metabolic theory, most physiological and life history traits scale approximately as quarter-power functions of body mass, m (rates as ∼m–1/4 and times as ∼m1/4), and as exponential functions of temperature. (4) Time is the fourth dimension of life. Generation time is the pace of life. (5) There is, however, considerable variation not accounted for by the above scalings and existing theories. Much of this “unexplained” variation is due to natural selection on life history traits to adapt the biological times of generations to the clock times of geochronological environmental cycles. (6) Most work on biological scaling and metabolic ecology has focused on respiration rate. The emerging synthesis applies conceptual foundations of energetics and the EFP to shift the focus to production rate and generation time. 
    more » « less
  5. Abstract Background

    Differences in morphology, ecology, and behavior through ontogeny can result in opposing selective pressures at different life stages. Most animals, however, transition through two or more distinct phenotypic phases, which is hypothesized to allow each life stage to adapt more freely to its ecological niche. How this applies to sensory systems, and in particular how sensory systems adapt across life stages at the molecular level, is not well understood. Here, we used whole-eye transcriptomes to investigate differences in gene expression between tadpole and juvenile southern leopard frogs (Lithobates sphenocephalus), which rely on vision in aquatic and terrestrial light environments, respectively. Because visual physiology changes with light levels, we also tested the effect of light and dark exposure.

    Results

    We found 42% of genes were differentially expressed in the eyes of tadpoles versus juveniles and 5% for light/dark exposure. Analyses targeting a curated subset of visual genes revealed significant differential expression of genes that control aspects of visual function and development, including spectral sensitivity and lens composition. Finally, microspectrophotometry of photoreceptors confirmed shifts in spectral sensitivity predicted by the expression results, consistent with adaptation to distinct light environments.

    Conclusions

    Overall, we identified extensive expression-level differences in the eyes of tadpoles and juveniles related to observed morphological and physiological changes through metamorphosis and corresponding adaptive shifts to improve vision in the distinct aquatic and terrestrial light environments these frogs inhabit during their life cycle. More broadly, these results suggest that decoupling of gene expression can mediate the opposing selection pressures experienced by organisms with complex life cycles that inhabit different environmental conditions throughout ontogeny.

     
    more » « less