skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.

Title: High-mobility semiconducting polymers with different spin ground states
Abstract Organic semiconductors with high-spin ground states are fascinating because they could enable fundamental understanding on the spin-related phenomenon in light element and provide opportunities for organic magnetic and quantum materials. Although high-spin ground states have been observed in some quinoidal type small molecules or doped organic semiconductors, semiconducting polymers with high-spin at their neutral ground state are rarely reported. Here we report three high-mobility semiconducting polymers with different spin ground states. We show that polymer building blocks with small singlet-triplet energy gap (Δ E S-T ) could enable small Δ E S-T gap and increase the diradical character in copolymers. We demonstrate that the electronic structure, spin density, and solid-state interchain interactions in the high-spin polymers are crucial for their ground states. Polymers with a triplet ground state ( S  = 1) could exhibit doublet ( S  = 1/2) behavior due to different spin distributions and solid-state interchain spin-spin interactions. Besides, these polymers showed outstanding charge transport properties with high hole/electron mobilities and can be both n- and p-doped with superior conductivities. Our results demonstrate a rational approach to obtain high-mobility semiconducting polymers with different spin ground states.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Stable organic semiconductors (OSCs) with a high-spin ground-state can profoundly impact emerging technologies such as organic magnetism, spintronics, and medical imaging. Over the last decade, there has been a significant effort to design π-conjugated materials with unpaired spin centers. Here, we report new donor–acceptor (D–A) conjugated polymers comprising cyclopentadithiophene and cyclopentadiselenophene donors with benzobisthiadiazole (BBT) and iso-BBT acceptors. Density functional theory calculations show that the BBT-based polymers display a decreasing singlet–triplet energy gap with increasing oligomer chain length, with degenerate singlet and triplet states for a N = 8 repeat unit. Furthermore, a considerable distance between the unpaired electrons with a pure diradical character disrupts the π-bond covalency and localizes the unpaired spins at the polymer ends. However, replacing the BBT acceptor with iso-BBT leads to a closed-shell configuration with a low-spin ground-state and a localized spin density on the polymer cores. This study shows the significance of the judicious choice of π-conjugated scaffolds in generating low- ( S = 0) and high-spin ( S = 1) ground-states in the neutral form, by modulation of spin topology in extended π-conjugated D–A polymers for emergent optoelectronic applications. 
    more » « less
  2. We explore the photochemistry of polymeric carbon nitride (C 3 N 4 ), an archetypal organic photocatalyst, and derivatives of its structural monomer unit, heptazine (Hz). Through spectroscopic studies and computational analysis, we have observed that Hz derivatives can engage in non-innocent hydrogen bonding interactions with hydroxylic species. The photochemistry of these complexes is influenced by intermolecular nπ*/ππ* mixing of non-bonding orbitals of each component and the relative energy of intermolecular charge-transfer (CT) states. Coupling of the former to the latter appears to facilitate proton-coupled electron transfer (PCET), resulting in biradical products. We have also observed that Hz derivatives exhibit an extremely rare inverted singlet/triplet energy splitting (Δ E ST ). In violation of Hund's multiplicity rules, the lowest energy singlet (S 1 ) is stabilized relative to the lowest triplet (T 1 ) electronic excited state. Exploiting this unique inverted Δ E ST character has obvious implications for transformational discoveries in solid-state OLED lighting and photovoltaics. Harnessing this inverted Δ E ST , paired with light-driven intermolecular PCET reactions, may enable molecular transformations relevant for applications ranging from solar energy storage to new classes of non-triplet photoredox catalysts for pharmaceutical development. To this end, we have explored the possibility of optically controlling the photochemistry of Hz derivatives using ultrafast pump–push–probe spectroscopy. In this case, the excited state branching ratios among locally excited states of the chromophore and the reactive intermolecular CT state can be manipulated with an appropriate secondary “push” excitation pulse. These results indicate that we can predictively redirect chemical reactivity with light in this system, which is an avidly sought achievement in the field of photochemistry. Looking forward, we anticipate future opportunities for controlling heptazine photochemistry, including manipulating PCET reactivity with a diverse array of substrates and optically delivering reducing equivalents with, for example, water as a partial source of electrons and protons. Furthermore, we wholly expect that, over the next decade, materials such as Hz derivatives, that exhibit inverted Δ E ST character, will spawn a significant new research effort in the field of thin-film optoelectronics, where controlling recombination via triplet excitonic states can play a critical role in determining device performance. 
    more » « less
  3. Interest in high-spin organic materials is driven by opportunities to enable far-reaching fundamental science and develop technologies that integrate light element spin, magnetic, and quantum functionalities. Although extensively studied, the intrinsic instability of these materials complicates synthesis and precludes an understanding of how fundamental properties associated with the nature of the chemical bond and electron pairing in organic materials systems manifest in practical applications. Here, we demonstrate a conjugated polymer semiconductor, based on alternating cyclopentadithiophene and thiadiazoloquinoxaline units, that is a ground-state triplet in its neutral form. Electron paramagnetic resonance and magnetic susceptibility measurements are consistent with a high-to-low spin energy gap of 9.30 × 10 −3 kcal mol −1 . The strongly correlated electronic structure, very narrow bandgap, intramolecular ferromagnetic coupling, high electrical conductivity, solution processability, and robust stability open access to a broad variety of technologically relevant applications once thought of as beyond the current scope of organic semiconductors. 
    more » « less
  4. Abstract

    Since doped polymers require a charge‐neutralizing counter‐ion to maintain charge neutrality, tailored and high degrees of doping in organic semiconductors requires an understanding of the coupling between ionic and electronic carrier motion. A method of counter‐ion exchange is utilized using the polymeric semiconductor poly[2,5‐bis(3‐tetradecylthiophen‐2‐yl)thieno[3,2‐b]thiophene] ‐C14to deconvolute the effects of ionic/polaronic interactions with the electrical properties of doped semiconducting polymers. In particular, exchanging the counter‐ions of the dopant nitrosonium hexafluorophosphate enables investigation into the role of counter‐ion size from 5.2 to 8.2 Å in diameter. The orientational order of the polymeric crystallites is not affected with this exchange process while effectively modifying the counter‐ion distance to the charge carrier. Doped films have electrical conductivities of 320 S cm−1and are not sensitive to an increased ion‐polaron distance. It is posited that other factors dominate the electrical properties at a device scale, such as the morphology and presence of domain boundaries. Interestingly, the temperature stability of the doped film can be drastically improved with the use of counter‐ions containing less labile bonds. This platform serves as a unique way to retain the morphology of polymeric thin films while studying charge interactions at the local scale.

    more » « less
  5. Abstract

    GaAs is well known for its extremely high electron mobility and direct band gap. Owing to the technological advances in silicon-based technology, GaAs has been limited to niche areas. This paper discusses the application of GaAs in molecular electronics and spintronics as a potential field for considering this amazing but challenging material. GaAs is challenging because its surface is characterized by a high density of surface states, which precludes the utilization of this semiconducting material in mainstream devices. Sulfur(S)-based passivation has been found to be significantly useful for reducing the effect of dangling bonds and was researched thoroughly. GaAs applications in molecular spintronics and electronics can benefit significantly from prior knowledge of GaAs and S interactions because S is a popular functional group for bonding molecular device elements with different semiconductors and metals. In this article, the problem associated with the GaAs surface is discussed in a tutorial form. A wide variety of surface passivation methods has been briefly introduced. We attempted to highlight the significant differences in the S-GaAs interactions for different S passivation methods. We also elaborate on the mechanisms and atomic-scale understanding of the variation in surface chemistry and reconstruction due to various S passivation methods. It is envisioned that GaAs and thiol-terminated molecule-based novel devices can exhibit innovative device characteristics and bring the added advantage of S-based passivation.

    more » « less