Stable organic semiconductors (OSCs) with a high-spin ground-state can profoundly impact emerging technologies such as organic magnetism, spintronics, and medical imaging. Over the last decade, there has been a significant effort to design π-conjugated materials with unpaired spin centers. Here, we report new donor–acceptor (D–A) conjugated polymers comprising cyclopentadithiophene and cyclopentadiselenophene donors with benzobisthiadiazole (BBT) and iso-BBT acceptors. Density functional theory calculations show that the BBT-based polymers display a decreasing singlet–triplet energy gap with increasing oligomer chain length, with degenerate singlet and triplet states for a N = 8 repeat unit. Furthermore, a considerable distance between the unpaired electrons with a pure diradical character disrupts the π-bond covalency and localizes the unpaired spins at the polymer ends. However, replacing the BBT acceptor with iso-BBT leads to a closed-shell configuration with a low-spin ground-state and a localized spin density on the polymer cores. This study shows the significance of the judicious choice of π-conjugated scaffolds in generating low- ( S = 0) and high-spin ( S = 1) ground-states in the neutral form, by modulation of spin topology in extended π-conjugated D–A polymers for emergent optoelectronic applications.
This content will become publicly available on December 1, 2023
High-mobility semiconducting polymers with different spin ground states
Abstract Organic semiconductors with high-spin ground states are fascinating because they could enable fundamental understanding on the spin-related phenomenon in light element and provide opportunities for organic magnetic and quantum materials. Although high-spin ground states have been observed in some quinoidal type small molecules or doped organic semiconductors, semiconducting polymers with high-spin at their neutral ground state are rarely reported. Here we report three high-mobility semiconducting polymers with different spin ground states. We show that polymer building blocks with small singlet-triplet energy gap (Δ E S-T ) could enable small Δ E S-T gap and increase the diradical character in copolymers. We demonstrate that the electronic structure, spin density, and solid-state interchain interactions in the high-spin polymers are crucial for their ground states. Polymers with a triplet ground state ( S = 1) could exhibit doublet ( S = 1/2) behavior due to different spin distributions and solid-state interchain spin-spin interactions. Besides, these polymers showed outstanding charge transport properties with high hole/electron mobilities and can be both n- and p-doped with superior conductivities. Our results demonstrate a rational approach to obtain high-mobility semiconducting polymers with different spin ground states.
- Award ID(s):
- 1757220
- Publication Date:
- NSF-PAR ID:
- 10335928
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We explore the photochemistry of polymeric carbon nitride (C 3 N 4 ), an archetypal organic photocatalyst, and derivatives of its structural monomer unit, heptazine (Hz). Through spectroscopic studies and computational analysis, we have observed that Hz derivatives can engage in non-innocent hydrogen bonding interactions with hydroxylic species. The photochemistry of these complexes is influenced by intermolecular nπ*/ππ* mixing of non-bonding orbitals of each component and the relative energy of intermolecular charge-transfer (CT) states. Coupling of the former to the latter appears to facilitate proton-coupled electron transfer (PCET), resulting in biradical products. We have also observed that Hz derivatives exhibit an extremely rare inverted singlet/triplet energy splitting (Δ E ST ). In violation of Hund's multiplicity rules, the lowest energy singlet (S 1 ) is stabilized relative to the lowest triplet (T 1 ) electronic excited state. Exploiting this unique inverted Δ E ST character has obvious implications for transformational discoveries in solid-state OLED lighting and photovoltaics. Harnessing this inverted Δ E ST , paired with light-driven intermolecular PCET reactions, may enable molecular transformations relevant for applications ranging from solar energy storage to new classes of non-triplet photoredox catalysts for pharmaceutical development. To this end, we have explored the possibilitymore »
-
Interest in high-spin organic materials is driven by opportunities to enable far-reaching fundamental science and develop technologies that integrate light element spin, magnetic, and quantum functionalities. Although extensively studied, the intrinsic instability of these materials complicates synthesis and precludes an understanding of how fundamental properties associated with the nature of the chemical bond and electron pairing in organic materials systems manifest in practical applications. Here, we demonstrate a conjugated polymer semiconductor, based on alternating cyclopentadithiophene and thiadiazoloquinoxaline units, that is a ground-state triplet in its neutral form. Electron paramagnetic resonance and magnetic susceptibility measurements are consistent with a high-to-low spin energy gap of 9.30 × 10 −3 kcal mol −1 . The strongly correlated electronic structure, very narrow bandgap, intramolecular ferromagnetic coupling, high electrical conductivity, solution processability, and robust stability open access to a broad variety of technologically relevant applications once thought of as beyond the current scope of organic semiconductors.
-
We present a valence transition model for electron- and hole-doped cuprates, within which there occurs a discrete jump in ionicity Cu2+ -> Cu1+ in both families upon doping, at or near optimal doping in the conventionally prepared electron-doped compounds and at the pseudogap phase transition in the hole-doped materials. In thin films of the T' compounds, the valence transition has occurred already in the undoped state. The phenomenology of the valence transition is closely related to that of the neutral-to-ionic transition in mixed-stack organic charge-transfer solids. Doped cuprates have negative charge-transfer gaps, just as rare-earth nickelates and BaBiO3. The unusually high ionization energy of the closed shell Cu1+ ion, taken together with the dopingdriven reduction in three-dimensional Madelung energy and gain in two-dimensional delocalization energy in the negative charge transfer gap state drives the transition in the cuprates. The combined effects of strong correlations and small d-p electron hoppings ensure that the systems behave as effective 1/2-filled Cu band with the closed shell electronically inactive O2- ions in the undoped state, and as correlated two-dimensional geometrically frustrated 1/4-filled oxygen hole band, now with electronically inactive closed-shell Cu1+ ions, in the doped state. The model thus gives microscopic justification for themore »
-
Doping is required to increase the electrical conductivity of organic semiconductors for uses in electronic and energy conversion devices. The limited number of commonly used p-type dopants suggests that new dopants or doping mechanisms could improve the efficiency of doping and provide new means for processing doped polymers. Drawing on Lewis acid–base pair chemistry, we combined Lewis acid dopant B(C 6 F 5 ) 3 (BCF) with the weak Lewis base benzoyl peroxide (BPO). The detailed behavior of p-type doping of the model polymer poly(3-hexylthiophene) (P3HT) with this Lewis acid–base pair in solution was examined. Solution 19 F-NMR spectra confirmed the formation of the expected counterion, as well as side products from reactions with solvent. BCF : BPO was also found to efficiently dope a range of semiconducting polymers with varying chemical structures demonstrating that the BCF : BPO combination has an effective electron affinity of at least 5.3 eV. In thin films of regioregular P3HT cast from the doped solutions, delocalized polarons formed due to the large counterions leading to a large polaron-counterion distance. At and above 0.2 eq. BCF : BPO doping, amorphous areas of the film became doped, disrupting the structural order of the films. Despite the change in structural order, thin filmsmore »