Abstract Emerging infectious diseases are increasingly recognized as a significant threat to global biodiversity conservation. Elucidating the relationship between pathogens and the host microbiome could lead to novel approaches for mitigating disease impacts. Pathogens can alter the host microbiome by inducing dysbiosis, an ecological state characterized by a reduction in bacterial alpha diversity, an increase in pathobionts, or a shift in beta diversity. We used the snake fungal disease (SFD; ophidiomycosis), system to examine how an emerging pathogen may induce dysbiosis across two experimental scales. We used quantitative polymerase chain reaction, bacterial amplicon sequencing, and a deep learning neural network to characterize the skin microbiome of free‐ranging snakes across a broad phylogenetic and spatial extent. Habitat suitability models were used to find variables associated with fungal presence on the landscape. We also conducted a laboratory study of northern watersnakes to examine temporal changes in the skin microbiome following inoculation withOphidiomyces ophidiicola. Patterns characteristic of dysbiosis were found at both scales, as were nonlinear changes in alpha and alterations in beta diversity, although structural‐level and dispersion changes differed between field and laboratory contexts. The neural network was far more accurate (99.8% positive predictive value [PPV]) in predicting disease state than other analytic techniques (36.4% PPV). The genusPseudomonaswas characteristic of disease‐negative microbiomes, whereas, positive snakes were characterized by the pathobiontsChryseobacterium,Paracoccus, andSphingobacterium. Geographic regions suitable forO. ophidiicolahad high pathogen loads (>0.66 maximum sensitivity + specificity). We found that pathogen‐induced dysbiosis of the microbiome followed predictable trends, that disease state could be classified with neural network analyses, and that habitat suitability models predicted habitat for the SFD pathogen.
more »
« less
Snake Fungal Disease Caused by the Fungal Pathogen Ophidiomyces ophidiicola in Texas.
The pathogen Ophidiomyces ophidiicola (O.o.), widely known as the primary cause of snake fungal disease (SFD) has been detected in Texas’s naïve snakes. Our team set out to begin to characterize O. ophidiicola’s spread in east Texas. From July 2019 until October 2021, we sampled 176 snakes across east Texas and detected 27 positives cases (qPCR confirmed 27/176). From a ribbon snake with clear clinical display, we isolated and cultured what we believe to be the Texas isolate of O. ophidiicola. With over 1/10 snakes that may be infected in East Texas, gives credence to the onset of SFD in Texas.
more »
« less
- Award ID(s):
- 1914538
- PAR ID:
- 10336112
- Date Published:
- Journal Name:
- bioRxiv
- ISSN:
- 2692-8205
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Timber rattlesnakes (Crotalus horridus) face escalating threats in the Northeastern Appalachians, including habitat fragmentation, human encroachment, and the fungal pathogenOphidiomyces ophiodiicola. Using untargeted sequencing of DNA extracted from scale clips, we generated both host whole-genome and metagenomic data for 97 snakes from eight populations. Analysis of the snake genomes shows the populations surveyed exhibit relatively low levels of inbreeding and are genetically distinct, but that the degree of separation correlates only weakly with geographic distance. A genome-wide association analysis identified a locus associated with black-to-yellow color variation that contains an aldehyde dehydrogenase gene (ALDH4A1) related to genes involved in hair color differences in humans. Metagenomic analysis showed thatO. ophiodiicolaread counts were generally higher in snakes exhibiting clinical signs of Snake Fungal Disease, but some visually asymptomatic snakes had high pathogen loads. Together, these findings highlight the dual utility of untargeted sequencing for population genetics and pathogen surveillance, providing a foundation for future studies of adaptation, disease dynamics, and conservation in this declining species.more » « less
-
null (Ed.)Ontogenetic changes in venom composition have important ecological implications due the relevance of venom in prey acquisition and defense. Additionally, intraspecific venom variation has direct medical consequences for the treatment of snakebite. However, ontogenetic changes are not well documented in most species. The Mexican Black-tailed Rattlesnake (Crotalus molossus nigrescens) is large-bodied and broadly distributed in Mexico. To document venom variation and test for ontogenetic changes in venom composition, we obtained venom samples from twenty-seven C. m. nigrescens with different total body lengths (TBL) from eight states in Mexico. The primary components in the venom were detected by reverse-phase HPLC, western blot, and mass spectrometry. In addition, we evaluated the biochemical (proteolytic, coagulant and fibrinogenolytic activities) and biological (LD50 and hemorrhagic activity) activities of the venoms. Finally, we tested for recognition and neutralization of Mexican antivenoms against venoms of juvenile and adult snakes. We detected clear ontogenetic venom variation in C. m. nigrescens. Venoms from younger snakes contained more crotamine-like myotoxins and snake venom serine proteinases than venoms from older snakes; however, an increase of snake venom metalloproteinases was detected in venoms of larger snakes. Venoms from juvenile snakes were, in general, more toxic and procoagulant than venoms from adults; however, adult venoms were more proteolytic. Most of the venoms analyzed were hemorrhagic. Importantly, Mexican antivenoms had difficulties recognizing low molecular mass proteins (<12 kDa) of venoms from both juvenile and adult snakes. The antivenoms did not neutralize the crotamine effect caused by the venom of juveniles. Thus, we suggest that Mexican antivenoms would have difficulty neutralizing some human envenomations and, therefore, it may be necessary improve the immunization mixture in Mexican antivenoms to account for low molecular mass proteins, like myotoxins.more » « less
-
null (Ed.)Ontogenetic changes in venom composition have been described in Bothrops snakes, but only a few studies have attempted to identify the targeted paralogues or the molecular mechanisms involved in modifications of gene expression during ontogeny. In this study, we decoded B. jararacussu venom gland transcripts from six specimens of varying sizes and analyzed the variability in the composition of independent venom proteomes from 19 individuals. We identified 125 distinct putative toxin transcripts, and of these, 73 were detected in venom proteomes and only 10 were involved in the ontogenetic changes. Ontogenetic variability was linearly related to snake size and did not correspond to the maturation of the reproductive stage. Changes in the transcriptome were highly predictive of changes in the venom proteome. The basic myotoxic phospholipases A2 (PLA2s) were the most abundant components in larger snakes, while in venoms from smaller snakes, PIII-class SVMPs were the major components. The snake venom metalloproteinases (SVMPs) identified corresponded to novel sequences and conferred higher pro-coagulant and hemorrhagic functions to the venom of small snakes. The mechanisms modulating venom variability are predominantly related to transcriptional events and may consist of an advantage of higher hematotoxicity and more efficient predatory function in the venom from small snakes.more » « less
-
null (Ed.)Abstract Uricotelic species, such as squamate reptiles, birds and insects, effectively eliminate nitrogen as uric acid in a solid form commonly called urates. Observations made over a decade suggested that the voided urates produced by colubroids (modern snake species) exhibit remarkable differences from those of boids and pythons (ancient snake species). Here, we compare the urates generated by eight captive snake species fed the same diet. Although all fresh urates were wet at the time of excretion, those produced by modern snakes dried to a powdery solid, whereas those of ancient species dried to a rock-hard mass that was tightly adherent to surfaces. Powder X-ray diffraction and infrared spectroscopy analyses performed on voided urates produced by five modern and three ancient snakes confirmed their underlying chemical and structural differences. Urates excreted by ancient snakes were amorphous uric acid, whereas urates from modern snakes consisted primarily of ammonium acid urate, with some uric acid dihydrate. These compositional differences indicate that snakes have more than one mechanism to manage nitrogenous waste. Why different species use different nitrogen-handling pathways is not yet known, but the answer might be related to key differences in metabolism, physiology or, in the case of ancient snakes, the potential use of urates in social communication.more » « less
An official website of the United States government

