skip to main content


Title: Practice-based research on the teaching of mathematics: Progress and imperatives for the future
Professional fields face persistent challenges in connecting practice and theory. In particular, tensions exist as to how theory and knowledge are developed, as well as what constitutes authority for practice. Together the articles in this issue explore three elements of the turn toward ”practice-based” research and professional education in mathematics education: designing teaching and learning in and for practice, learning mathematics teaching as a practice, and collaborating across professional roles and identities. In this commentary, we interrogate meanings of practice-based research on teaching and discuss themes across this collection of articles. We then argue for three imperatives for future efforts: (i) working on shared understandings of what the term ”practice-based” might mean; (ii) developing more nuanced conceptualizations of ”teaching”; and (iii) attending explicitly to justice in practice.  more » « less
Award ID(s):
1760788
NSF-PAR ID:
10336158
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Nordisk matematikkdidaktikk
Volume:
26
Issue:
3-4
ISSN:
1104-2176
Page Range / eLocation ID:
171-190
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This research paper studies the challenges that mathematics faculty and graduate teaching assistants (GTAs) faced when moving active and collaborative calculus courses from in-person to virtual instruction. As part of a larger pedagogical change project (described below), the math department at a public Research-1 university began transitioning pre-calculus and calculus courses to an active and collaborative learning (ACL) format in Fall 2019. The change began with the introduction of collaborative worksheets in recitations which were led by GTAs and supported by undergraduate learning assistants (LAs). Students recitation periods collaboratively solving the worksheet problems on whiteboards. When COVID-19 forced the rapid transition to online teaching, these ACL efforts faced an array of challenges. Faculty and GTA reflections on the changes to teaching and learning provide insight into how instructional staff can be supported in implementing ACL across various modes of instruction. The calculus teaching change efforts discussed in this paper are part of an NSF-supported project that aims to make ACL the default method of instruction in highly enrolled gateway STEM courses across the institution. The theoretical framework for the project builds on existing work on grassroots change in higher education (Kezar and Lester, 2011) to study the effect of communities of practice on changing teaching culture. The project uses course-based communities of practice (Wenger, 1999) that include instructors, GTAs, and LAs working together to design and enact teaching change in the targeted courses alongside ongoing professional development for GTAs and LAs. Six faculty and five GTAs involved in the teaching change effort in mathematics were interviewed after the Spring 2020 semester ended. Interview questions focused on faculty and GTA experiences implementing active learning after the rapid transition to online teaching. A grounded coding scheme was used to identify common themes in the challenges faced by instructors and GTAs as they moved online and in the impacts of technology, LA support, and the department community of practice on the move to online teaching. Technology, including both access and capabilities, emerged as a common barrier to student engagement. A particular barrier was students’ reluctance to share video or participate orally in sessions that were being recorded, making group work more difficult than it had been in a physical classroom. In addition, most students lacked access to a tablet for freehand writing, presenting a significant hurdle for sharing mathematical notation when physical whiteboards were no longer an option. These challenges point to the importance of incorporating flexibility in active learning implementation and in the professional development that supports teaching changes toward active learning, since what is conceived for a collaborative physical classroom may be implemented in a much different environment. The full paper will present a detailed analysis of the data to better understand how faculty and GTA experiences in the transition to online delivery can inform planning and professional development as the larger institutional change effort moves forward both in mathematics and in other STEM fields. 
    more » « less
  2. null (Ed.)
    The development of professional engineers for the workforce is one of the aims of engineering education, which benefits from the complementary efforts of engineering students, faculty, and employers. Typically, current research on engineering competencies needed for practice in the workplace is focused on the experiences and perspectives of practicing engineers. This study aimed to build on this work by including the perspectives and beliefs of engineering faculty about preparing engineering students, as well as the perspectives and beliefs of engineering students about preparing for the workplace. The overall question of the research was, “What and how do engineering students learn about working in the energy sector?” Additional questions asked practicing engineers, “What is important to learn about your work and how did you learn what was important when you started in this industry? For engineering faculty, we asked, “What is important for students to learn as they prepare for work as professionals in the energy industry?” We anticipated that the findings of triangulating these three samples would help us better understand the nature of the preparation of engineering students for work by exploring the connections and disconnections between engineering education in school and engineering practice in the workplace. The aim was to map out the complex ecosystem of professional learning in the context of engineering education and practice. The core concept framing this study is the development of competence for engineering practice—including the education of students in the context of higher education and the practical learning of newly hired engineers on the job. Initial findings of the work-in-progress describe the nature of instruction and learning in higher education, learning in the workplace, along with comparisons and contrasts between the two. As of this point, we have initially mapped the learning ecosystem in the workplace based on in-depth, qualitative interviews with 12 newly hired engineers in the target energy company. In addition, we are analyzing interviews with two managers in the company and three other experienced leaders in the energy industry (this sample is currently in process and will include interviews with more participants). Currently, we are analyzing and mapping the learning and experiences of students in their studies of energy engineering and the instructional goals of engineering faculty teaching and mentoring these students. The map of the higher education ecosystem will connect with the workplace ecosystem to portray a more longitudinal map of the learning and development of professional competence of engineering students preparing for their career in the energy sector. The findings of the analysis of the workplace emphasized the importance of the social and relational systems in the workplace, while very preliminary indications from the educational context (students and faculty) indicate initial awareness of the social context of energy practice and policy. There are also indications of the nature of important cultural differences between higher education and industry. We continue to collect data and work on the analysis of data with the aim of mapping out the larger learning and experience ecosystem that leading to professional competence. 
    more » « less
  3. Abstract Here, we systematically review research on teaching knowledge in the context of undergraduate STEM education, with particular attention to what this research reveals about knowledge that is important for evidence-based teaching. Evidence-based teaching can improve student outcomes in undergraduate STEM education. However, the enactment of promising evidence-based teaching strategies depends greatly on the instructor and potentially on the teaching knowledge they are able to deploy. The review includes an overview of prevalent teaching knowledge theory, including pedagogical content knowledge, mathematical knowledge for teaching, and pedagogical knowledge. We compare and contrast teaching knowledge theory and terminology across STEM disciplines in order to build bridges for researchers across disciplines. Our search for peer-reviewed investigations of teaching knowledge in undergraduate science, engineering and mathematics yielded 45 papers. We examined the theoretical frameworks used in each study and analyzed study approaches, comparing across disciplines. Importantly, we also synthesized findings from research conducted in the context of evidence-based teaching. Overall, teaching knowledge research is sparse and siloed by discipline, and we call for collaborative work and better bridge-building across STEM disciplines. Though disciplinary divergences are common in discipline-based education research, the effect is magnified in this research area because the theoretical frameworks are themselves siloed by discipline. Investigations of declarative knowledge were common, and we call for increased attention to knowledge used in the practice of teaching. Finally, there are not many studies examining teaching knowledge in the context of evidence-based teaching, but the existing work suggests that components of pedagogical content knowledge, pedagogical knowledge, and content knowledge influence the implementation of evidence-based teaching. We describe implications for future teaching knowledge research. We also call on those who develop and test evidence-based strategies and curriculum to consider, from the beginning, the teaching knowledge needed for effective implementation. 
    more » « less
  4. Zou, Di (Ed.)
    Professional development has been identified as an effective way to increase college STEM instructors’ use of research-based instructional strategies (RBIS) known to benefit student learning and persistence in STEM. Yet only a few studies relate professional development experiences to later teaching behaviors of higher education instructors. This study of 361 undergraduate mathematics instructors, all of whom participated in multi-day, discipline-based workshops on teaching held in 2010–2019, examined the relationship between such participation and later use of RBIS. We found that instructors’ RBIS attitudes, knowledge, and skills strengthened after participating in professional development, and their self-reported use of RBIS became more frequent in the first year after the workshop. Applying the Theory of Planned Behavior as a conceptual framework, we used a structural equation model to test whether this theory could explain the roles of workshop participation and other personal, professional and contextual factors in fostering RBIS use. Findings indicated that, along with workshop participation, prior RBIS experience, class size, and course coordination affected RBIS use. That is, both targeted professional development and elements of the local context for implementation were important in supporting instructors’ uptake of RBIS—but, remarkably, both immediate and longer-term outcomes of professional development did not depend on other individual or institutional characteristics. In this study, the large sample size, longitudinal measurement approach, and consistency of the form and quality of professional development make it possible to distinguish the importance of multiple possible influences on instructors’ uptake of RBIS. We discuss implications for professional development and for institutional structures that support instructors as they apply what they learned, and we offer suggestions for the use of theory in future research on this topic. 
    more » « less
  5. Abstract Background

    To increase teachers’ capacity to implement high-quality instructional materials with fidelity in their classrooms through a video-based professional learning cycle, the Analyzing Instruction in Mathematics Using the Teaching for Robust Understanding framework (AIM–TRU) research–practice partnership was formed. Drawing upon the design-based research paradigm, AIM–TRU created the initial design for the professional learning cycle and wanted to engage in continued iterative redesign as the year progressed. This necessitated a method, common among those who adjust their designs when applying them in context, by which to document and justify changes made over time to our model. The research contained in this article used qualitative methods to articulate and test the design underlying our professional learning cycle by advancing conjecture mapping, a device by which the embodiments of the design are made transparent to be analyzed in practice.

    Results

    The initial design conjectures and activity structures teachers engaged in through our model of professional learning were refined to address three themes that emerged. Firstly, it was found that the ways participants engaged with the mathematics of the lesson were underwhelming, in large part, because our own definition of what rich talk around mathematics should entail was lacking in details such as the mathematical objects in the lesson, the presence of multiple solution pathways, or the various representations that students could use. Second, talk structures did not always allow for equitable exchanges among all teachers. Finally, activity structures did not encourage teachers to delve deeply into the mathematics so they could perceive the lesson as a coherent piece of their own classroom curriculum. Our design conjectures and activity structures were revised over the course of the year.

    Conclusions

    Our use of conjecture mapping allowed us to address the concern with research–practice partnerships that they should develop and utilize tools that make the systemic inquiry they engage in transparent, allowing for other researchers, practitioners, and stakeholders to see the complete design process and make use of the findings for their local context. Implications for this process as a tool for those who pilot and scale professional development are raised and addressed.

     
    more » « less