skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Molecular interactions and inhibition of the SARS‐CoV‐2 main protease by a thiadiazolidinone derivative
We report molecular interactions and inhibition of the main protease (MPro) of SARS-CoV-2, a key enzyme involved in the viral life cycle. By using a thiadiazolidinone (TDZD) derivative as a chemical probe, we explore the conformational dynamics of MPro via docking protocols and molecular dynamics simulations in all-atom detail. We reveal the local and global dynamics of MPro in the presence of this inhibitor and confirm the inhibition of the enzyme with an IC50 value of 1.39 ± 0.22 μM, which is comparable to other known inhibitors of this enzyme.  more » « less
Award ID(s):
1757371
PAR ID:
10336259
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proteins: Structure, Function, and Bioinformatics
ISSN:
0887-3585
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Small molecule inhibitors of snake venom metalloproteinases (SVMPs) could provide a means to rapidly halt the progression of local tissue damage following viperid snake envenomations. In this study, we examine the ability of candidate compounds based on a pentacyclic triterpene skeleton to inhibit SVMPs. We leverage molecular dynamics simulations to estimate the free energies of the candidate compounds for binding to BaP1, a P-I type SVMP, and compare these results with experimental assays of proteolytic activity inhibition in a homologous enzyme (Batx-I). Both simulation and experiment suggest that betulinic acid is the most active candidate, with the simulations predicting a standard binding free energy of Δ G ∘ = − 11.0 ± 1.4 kcal/mol. The simulations also reveal the atomic interactions that underlie binding between the triterpenic acids and BaP1, most notably the electrostatic interaction between carboxylate groups of the compounds and the zinc cofactor of BaP1. Together, our simulations and experiments suggest that occlusion of the S1 ′ subsite is essential for inhibition of proteolytic activity. While all active compounds make hydrophobic contacts in the S1 ′ site, β -boswellic acid, with its distinct carboxylate position, does not occlude the S1 ′ site in simulation and exhibits negligible activity in experiment. 
    more » « less
  2. Abstract Heterotrophic microorganisms are responsible for transforming and respiring a substantial fraction of the organic matter produced by phytoplankton in the surface ocean. Much of this organic matter is composed of polysaccharides, high‐molecular weight (HMW) sugars. To initiate degradation of polysaccharides, microorganisms must produce extracellular enzymes of the right structural specificity to hydrolyze these complex structures. To date, most measurements of enzyme activities are made at in situ temperatures, but at atmospheric pressure. However, previous studies have shown that hydrostatic pressure can impact the functionality of enzymes. Since deep sea communities may be seeded by microbes from shallow waters, we aimed to determine if pressure affects the performance of enzymes from coastal waters. To determine the extent to which enzymatic activities of coastal microbial communities are affected by pressure, we quantified the degradation of seven polysaccharides under pressures ranging from 0.1 MPa (atmospheric) to 40 MPa (equivalent to 4,000 m). Enzyme activities of pelagic communities were inhibited with increased pressure, while enzyme activities of benthic microbial communities were more resistant to increased pressure. Addition of HMW organic matter resulted in communities with enzyme activities that were more resistant to increased pressure. However, the freely‐dissolved enzymes (<0.2 μm) produced by these communities were strongly inhibited by increased hydrostatic pressure, suggesting that the pressure‐resistant enzymes were cell‐surface attached. Because pressure inhibition of enzyme activities varied strongly by polysaccharide, we surmise that the structural complexity of a polysaccharide—and therefore the number of distinct enzymes required for hydrolysis—is likely closely associated with pressure inhibition. 
    more » « less
  3. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein binds the receptor angiotensin converting enzyme 2 (ACE2) and drives virus-host membrane fusion through refolding of its S2 domain. Whereas the S1 domain contains high sequence variability, the S2 domain is conserved and is a promising pan-betacoronavirus vaccine target. We applied cryo–electron tomography to capture intermediates of S2 refolding and understand inhibition by antibodies to the S2 stem-helix. Subtomogram averaging revealed ACE2 dimers cross-linking spikes before transitioning into S2 intermediates, which were captured at various stages of refolding. Pan-betacoronavirus neutralizing antibodies targeting the S2 stem-helix bound to and inhibited refolding of spike prehairpin intermediates. Combined with molecular dynamics simulations, these structures elucidate the process of SARS-CoV-2 entry and reveal how pan-betacoronavirus S2-targeting antibodies neutralize infectivity by arresting prehairpin intermediates. 
    more » « less
  4. Oncogenic mutations within the epidermal growth factor receptor (EGFR) are found in 15 to 30% of all non–small-cell lung carcinomas. The term exon 19 deletion (ex19del) is collectively used to refer to more than 20 distinct genomic alterations within exon 19 that comprise the most common EGFR mutation subtype in lung cancer. Despite this heterogeneity, clinical treatment decisions are made irrespective of which EGFR ex19del variant is present within the tumor, and there is a paucity of information regarding how individual ex19del variants influence protein structure and function. Herein, we identified allele-specific functional differences among ex19del variants attributable to recurring sequence and structure motifs. We built all-atom structural models of 60 ex19del variants identified in patients and combined molecular dynamics simulations with biochemical and biophysical experiments to analyze three ex19del mutations (E746_A750, E746_S752 > V, and L747_A750 > P). We demonstrate that sequence variation in ex19del alters oncogenic cell growth, dimerization propensity, enzyme kinetics, and tyrosine kinase inhibitor (TKI) sensitivity. We show that in contrast to E746_A750 and E746_S752 > V, the L747_A750 > P variant forms highly active ligand-independent dimers. Enzyme kinetic analysis and TKI inhibition experiments suggest that E746_S752 > V and L747_A750 > P display reduced TKI sensitivity due to decreased adenosine 5′-triphosphate K m . Through these analyses, we propose an expanded framework for interpreting ex19del variants and considerations for therapeutic intervention. 
    more » « less
  5. null (Ed.)
    Snake bite envenoming is a public health problem that was recently included in the list of neglected tropical diseases of the World Health Organization. In the search of new therapies for the treatment of local tissue damage induced by snake venom metalloproteinases (SVMPs), we tested the inhibitory activity of peptidomimetic compounds designed as inhibitors of matrix metalloproteinases on the activities of the SVMP Batx-I, from Bothrops atrox venom. The evaluated compounds show great potential for the inhibition of Batx-I proteolytic, hemorrhagic and edema-forming activities, especially the compound CP471474, a peptidomimetic including a hydroxamate zinc binding group. Molecular dynamics simulations suggest that binding of this compound to the enzyme is mediated by the electrostatic interaction between the hydroxamate group and the zinc cofactor, as well as contacts, mainly hydrophobic, between the side chain of the compound and amino acids located in the substrate binding subsites S1 and S1 ′ . These results show that CP471474 constitutes a promising compound for the development of co-adjuvants to neutralize local tissue damage induced by snake venom metalloproteinases. 
    more » « less