skip to main content


Title: Long-period variability in ice-dammed glacier outburst floods due to evolving catchment geometry
Abstract. We combine a glacier outburst flood model with a glacier flow model to investigate decadal to centennial variations in outburst floods originating from ice-dammed marginal basins. Marginal basins can form due to the retreat and detachment of tributary glaciers, a process that often results in remnant ice being left behind. The remnant ice, which can act like an ice shelf or break apart into a pack of icebergs, limits a basin's water storage capacity but also exerts pressure on the underlying water and promotes drainage. We find that during glacier retreat there is a strong, nearly linear relationship between flood water volume and peak discharge for individual basins, despite large changes in glacier and remnant ice volumes that are expected to impact flood hydrographs. Consequently, peak discharge increases over time as long as there is remnant ice remaining in a basin, and peak discharge begins to decrease once a basin becomes ice-free. Thus, similar size outburst floods can occur at very different stages of glacier retreat. We also find that the temporal variability in outburst flood magnitude depends on how the floods initiate. Basins that connect to the subglacial hydrological system only after reaching flotation depth yield greater long-term variability in outburst floods than basins that are continuously connected to the subglacial hydrological system (and therefore release floods that initiate before reaching flotation depth). Our results highlight the importance of improving our understanding of both changes in basin geometry and outburst flood initiation mechanisms in order to better assess outburst flood hazards and their impacts on landscape and ecosystem evolution.  more » « less
Award ID(s):
1757348
NSF-PAR ID:
10336358
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Cryosphere
Volume:
16
Issue:
1
ISSN:
1994-0424
Page Range / eLocation ID:
333 to 347
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Lake sediment records give valuable insight into the dynamic events that characterized the last deglaciation in Iceland. Here, we focus on the well‐dated sediment record from Hestvatn, a low‐elevation lake in south Iceland, that features six graded bedding events deposited by outburst floods from glacial lakes dammed by the decaying Iceland Ice Sheet (IIS) in the time period of the Vedde Ash and the G10ka Series tephra. Using climate proxies preserved in the sediment cores, in conjunction with regional glacial geomorphology, we reconstruct the retreat of the IIS in south Iceland, from a marine‐based glacier during the Younger Dryas to a land‐based glacier during the Preboreal. As the ice sheet margin withdrew to the central highlands, ice‐dammed lakes formed along glacier margins. The ice‐dams were occasionally breached, generating large‐scale jökulhlaups (catastrophic outburst floods) that deposited thick turbidite sequences preserved in the sediment record of Hestvatn. The high concentration of volcanic material incorporated within deglacial sediments indicates that along with IIS retreat, subglacial volcanic activity may have helped initiate some of the jökulhlaups. Onset of more stable Holocene conditions was reached after the final turbidite at ~10 kabp, when the IIS had withdrawn from most of the highlands of Iceland.

     
    more » « less
  2. ABSTRACT The currently favored hypothesis for Late Paleozoic Ice Age glaciations is that multiple ice centers were distributed across Gondwana and that these ice centers grew and shank asynchronously. Recent work has suggested that the Transantarctic Basin has glaciogenic deposits and erosional features from two different ice centers, one centered on the Antarctic Craton and another located over Marie Byrd Land. To work towards an understanding of LPIA glaciation that can be tied to global trends, these successions must be understood on a local level before they can be correlated to basinal, regional, or global patterns. This study evaluates the sedimentology, stratigraphy, and flow directions of the glaciogenic, Asselian–Sakmarian (Early Permian) Pagoda Formation from four localities in the Shackleton Glacier region of the Transantarctic Basin to characterize Late Paleozoic Ice Age glaciation in a South Polar, basin-marginal setting. These analyses show that the massive, sandy, clast-poor diamictites of the Pagoda Fm were deposited in a basin-marginal subaqueous setting through a variety of glaciogenic and glacially influenced mechanisms in a depositional environment with depths below normal wave base. Current-transported sands and stratified diamictites that occur at the top of the Pagoda Fm were deposited as part of grounding-line fan systems. Up to at least 100 m of topographic relief on the erosional surface underlying the Pagoda Fm strongly influenced the thickness and transport directions in the Pagoda Fm. Uniform subglacial striae orientations across 100 m of paleotopographic relief suggest that the glacier was significantly thick to “overtop” the paleotopography in the Shackleton Glacier region. This pattern suggests that the glacier was likely not alpine, but rather an ice cap or ice sheet. The greater part of the Pagoda Fm in the Shackleton Glacier region was deposited during a single retreat phase. This retreat phase is represented by a single glacial depositional sequence that is characteristic of a glacier with a temperate or mild subpolar thermal regime and significant meltwater discharge. The position of the glacier margin likely experienced minor fluctuations (readvances) during this retreat. Though the sediment in the Shackleton Glacier region was deposited during a single glacier retreat phase, evidence from this study does not preclude earlier or later glacier advance–retreat cycles preserved elsewhere in the basin. Ice flow directions indicate that the glacier responsible for this sedimentation was likely flowing off of an upland on the side of the Transantarctic Basin closer to the Panthalassan–Gondwanide margin (Marie Byrd Land), which supports the hypothesis that two different ice centers contributed glaciogenic sediments to the Transantarctic Basin. Together, these observations and interpretations provide a detailed local description of Asselian–Sakmarian glaciation in a South Polar setting that can be used to understand larger-scale patterns of regional and global climate change during the Late Paleozoic Ice Age. 
    more » « less
  3. Abstract. The role of icebergs in narrow fjords hosting marine-terminating glaciers in Greenland is poorly understood, even though iceberg melt results in asubstantial freshwater flux that can exceed the subglacial discharge. Furthermore, the melting of deep-keeled icebergs modifies the verticalstratification of the fjord and, as such, can impact ice–ocean exchanges at the glacier front. We model an idealised representation of thehigh-silled Ilulissat Icefjord in West Greenland with the MITgcm ocean circulation model, using the IceBerg package to study the effect of submarineiceberg melt on fjord water properties over a runoff season, and compare our results with available observations from 2014. We find the subglacialdischarge plume to be the primary driver of the seasonality of circulation, glacier melt and iceberg melt. Furthermore, we find that melting oficebergs modifies the fjord in three main ways: first, icebergs cool and freshen the water column over their vertical extent; second, iceberg-melt-induced changes to fjord stratification cause the neutral buoyancy depth of the plume and the export of glacially modified waters to be deeper;third, icebergs modify the deep basin, below their vertical extent, by driving mixing of the glacially modified waters with the deep-basin watersand by modifying the incoming ambient waters. Through the combination of cooling and causing the subglacial-discharge-driven plume to equilibratedeeper, icebergs suppress glacier melting in the upper layer, resulting in undercutting of the glacier front. Finally, we postulate that the impactof submarine iceberg melt on the neutral buoyancy depth of the plume is a key mechanism linking the presence of an iceberg mélange with theglacier front, without needing to invoke mechanical effects.

     
    more » « less
  4. Abstract

    Bedrock erosion and canyon formation during extreme floods have dramatically altered landscapes on Earth and Mars. Grand Coulee was carved by outburst floods from Pleistocene glacial Lake Missoula and is the largest canyon in the Channeled Scabland, a megaflood‐scoured landscape in the northwestern USA. Quantifying paleo‐discharge is required to understand how landscapes evolve in response to extreme events, but there are few constraints on the magnitude of the floods that incised Grand Coulee; hence, we used hydraulic modeling and geologic evidence to quantify paleo‐flood discharges during different phases of canyon incision. When upper Grand Coulee was incising by headward waterfall retreat, the paleo‐discharge was 2.6 × 106 m3s−1, which produced shear stresses great enough to cause the waterfall to retreat via toppling of basalt columns. The largest possible flood through upper Grand Coulee, a Missoula flood which raised glacial Lake Columbia to a stage of 750 m, produced a modeled discharge of 7.6 × 106 m3s−1. The discharges associated with waterfall retreat and drainage of glacial Lake Columbia are >80% and ∼50% lower, respectively, than the 14–17 × 106 m3s−1discharge predicted by assuming the present‐day topography was inundated to the elevation of high‐water marks. Due to bedrock incision, high‐water marks may overestimate paleo‐flow depth in canyons carved by floods, hence bedrock erosion should be considered when estimating paleo‐discharge in flood‐carved canyons. Our results indicate that outburst floods with discharges and flow depths much lower than those required to inundate high‐water marks are capable of carving deep canyons.

     
    more » « less
  5. Abstract Marine-terminating glaciers lose mass through melting and iceberg calving, and we find that meltwater drainage systems influence calving timing at Helheim Glacier, a tidewater glacier in East Greenland. Meltwater feeds a buoyant subglacial discharge plume at the terminus of Helheim Glacier, which rises along the glacial front and surfaces through the mélange. Here, we use high-resolution satellite and time-lapse imagery to observe the surface expression of this meltwater plume and how plume timing and location compare with that of calving and supraglacial meltwater pooling from 2011 to 2019. The plume consistently appeared at the central terminus even as the glacier advanced and retreated, fed by a well-established channelized drainage system with connections to supraglacial water. All full-thickness calving episodes, both tabular and non-tabular, were separated from the surfacing plume by either time or by space. We hypothesize that variability in subglacial hydrology and basal coupling drive this inverse relationship between subglacial discharge plumes and full-thickness calving. Surfacing plumes likely indicate a low-pressure subglacial drainage system and grounded terminus, while full-thickness calving occurrence reflects a terminus at or close to flotation. Our records of plume appearance and full-thickness calving therefore represent proxies for the grounding state of Helheim Glacier through time. 
    more » « less