skip to main content


Title: Evaluating the experimental uncertainty in gas and vapor sorption/adsorption measurements: fundamental considerations and experimental design implications
Award ID(s):
2005282
NSF-PAR ID:
10336417
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Industrial engineering chemistry research
ISSN:
0888-5885
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Soil respiration in 15 stands across 3 sites within the White Mountain National Forest was measured between 2008 and 2020. Stands included in the dataset are part of the Multiple Element in Northern Hardwood Ecosystems (MELNHE) study, a full-factorial NxP fertilization experiment. Pre- and post-treatment data are included, with treatment beginning in 2011. Soil temperature, soil moisture, and relative air humidity at the time of measurement were also recorded next to or above the soil respiration collar at the time of the soil respiration measurement. Having been cut between 1883 and 1990, stands are representative of different successional stages. 
    more » « less
  2. The MELNHE study looks at patterns of resource limitation through nutrient manipulations in three study sites in New Hampshire: Bartlett Experimental Forest, Hubbard Brook Experimental Forest, and Jeffers Brook, located in the White Mountain National Forest. The investigation is monitoring stem diameter, leaf area, sap flow, foliar chemistry, leaf litter production and chemistry, foliar nutrient resorption, root biomass and production, mycorrhizal associations, soil respiration, heterotrophic respiration, N and P availability, N mineralization, soil phosphatase activity, soil carbon and nitrogen, nutrient uptake capacity of roots, and mineral weathering. Applications of N and P began in June 2011 and continue at the rate of 30 kg N/ha/yr (as NH4NO3) and 10 kg P/ha/yr (as NaH2PO4). This dataset was produced using thermal dissipation probes in hardwood trees. We recorded temperature differences between the reference and heated over multiple days in five hardwood species across 5 years. Sites are located in Bartlett Experimental Forest and Hubbard Brook Experimental Forest in NH. The number of trees in each plot and species vary among years. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  3. The MELNHE study looks at patterns of resource limitation through nutrient manipulations in three study sites in New Hampshire: Bartlett Experimental Forest, Hubbard Brook Experimental Forest, and Jeffers Brook, located in the White Mountain National Forest. The investigation is monitoring stem diameter, leaf area, sap flow, foliar chemistry, leaf litter production and chemistry, foliar nutrient resorption, root biomass and production, mycorrhizal associations, soil respiration, heterotrophic respiration, N and P availability, N mineralization, soil phosphatase activity, soil carbon and nitrogen, nutrient uptake capacity of roots, and mineral weathering. This data set includes phosphate, nitrate and ammonium availability measured using resin exchange strips. Additional detail on the MELNHE project, including a datatable of site descriptions and a pdf file with the project description and diagram of plot configuration can be found in this data package: https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hbr&identifier=344 These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. The following papers describe and make use of these data: Fisk MC, Ratliff TJ, Goswami S, Yanai RD. 2014. Synergistic soil response to nitrogen plus phosphorus fertilization in hardwood forests. Biogeochemistry 118:195-204. https://doi.org/10.1007/s10533-013-9918-1 Goswami S, Fisk MC, Vadeboncoeur MA, Johnston M, Yanai RD, and Fahey TJ. 2018. Phosphorus limitation of aboveground production in northern hardwood forests. Ecology 99: 438-449. https://doi.org/10.1002/ecy.2100 Shan S, Fisk MC, Fahey TJ. 2018. Contrasting effects of N on rhizosphere processes in two northern hardwood species. Soil Biology and Biochemistry 126: 219-227. https://doi.org/10.1016/j.soilbio.2018.09.007 Shan S, Devens H, Fahey TJ, Yanai RD, Fisk MC. 2022. Fine root growth increases in response to nitrogen addition in phosphorus-limited northern hardwood forests. Ecosystems, https://doi.org/10.1007/s10021-021-00735-4 Gonzales KE, Yanai RD, Fahey TJ, Fisk MC. 2023. Evidence for P limitation in eight northern hardwood stands: Foliar concentrations and resorption by three tree species in a factorial N by P addition experiment. Forest Ecology and Management 529: 120696. https://doi.org/10.1016/j.foreco.2022.120696 Li S, Fisk MC, Yanai RD, Fahey TJ. 2023. Co-limitation of root growth by nitrogen and phosphorus in early successional northern hardwood forest. Ecosystems. https://10.1007/s10021-023-00869-7 
    more » « less
  4. The Multiple Element Limitation in Northern Hardwood Ecosystems (MELNHE) project studies N and P acquisition and limitation through a series of nutrient manipulations in northern hardwood forests. This data set includes net N mineralization measured in Oe, Oa, and mineral soil horizons in all 13 of the MELNHE study sites. Samples are collected every several years, beginning with pretreatment (2008 and 2009) through 2017, representing 3 years of N and P fertilization. Additional detail on the MELNHE project, including a datatable of site descriptions and a pdf file with the project description and diagram of plot configuration can be found in this data package: https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hbr&identifier=344 These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. The following papers describe and make use of these data: Kang H, Fahey TJ, Bae K, Fisk MC, Sherman RE, Yanai RD, See C. 2016. Response of forest soil respiration to nutrient addition depends on site fertility. Biogeochemistry 127:113-124. https://doi.org/10.1007/s10533-015-0172-6. Ratliff TJ, Fisk MC. 2016. Phosphatase activity is related to N availability but not P availability across hardwood forests in the northeastern United States. Soil Biology and Biochemistry 94:61-69. https://doi.org/10.1016/j.soilbio.2015.11.009. Bae B, Fahey TJ, Yanai RD, Fisk MC. 2015. Soil nitrogen availability affects belowground carbon allocation and soil respiration in northern hardwood forests of New Hampshire. Ecosystems 18:1179-1191. https://doi.org/10.1007/s10021-015-9892-7. Fisk MC, Ratliff TJ, Goswami S, Yanai RD. 2014. Synergistic soil response to nitrogen plus phosphorus fertilization in hardwood forests. Biogeochemistry 118:195-204. https://doi.org/10.1007/s10533-013-9918-1. 
    more » « less