skip to main content

Title: Shear viscosity at finite baryon densities
We use the excluded volume Hadron Resonance Gas (HRG) model with the most up-to-date hadron list to calculate η T/w at low temperatures and at finite baryon densities ρ B . This η T/w is then matched to a QCD-based shear viscosity calculation of the QGP for different profiles of η T/w across T,μ B including cross-over and critical point transitions. When compared to ideal hydrodynamic trajectories across T,μ B , we find that the η T/w (T,μ B ) profiles would require initial conditions at much larger baryon density to reach the same freeze-out point.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
David, G.; Garg, P.; Kalweit, A.; Mukherjee, S.; Ullrich, T.; Xu, Z.; Yoo, I.-K.
Date Published:
Journal Name:
EPJ Web of Conferences
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kim, Y. ; Moon, D.H. (Ed.)
    At low to moderate collision energies where the parton formation time τ F is not small compared to the nuclear crossing time, the finite nuclear thickness significantly affects the energy density ϵ( t ) and net conserved-charge densities such as the net-baryon density n B ( t ) produced in heavy ion collisions. As a result, at low to moderate energies the trajectory in the QCD phase diagram is also affected by the finite nuclear thickness. Here, we first discuss our semi-analytical model and its results on ϵ( f ), n R ( t ), n Q ( t ), and n s ( t ) in central Au+Au collisions. We then compare the T ( t ), μ B ( t ), μ Q ( t ), and μ S ( t ) extracted with the ideal gas equation of state (EoS) with quantum statistics to those extracted with a lattice QCD-based EoS. We also compare the T -μ B trajectories with the RHIC chemical freezeout data. Finally, we discuss the effect of transverse flow on the trajectories. 
    more » « less
  2. A bstract This article presents differential measurements of the asymmetry between $$ {\varLambda}_b^0 $$ Λ b 0 and $$ {\overline{\varLambda}}_b^0 $$ Λ ¯ b 0 baryon production rates in proton-proton collisions at centre-of-mass energies of $$ \sqrt{s} $$ s = 7 and 8 TeV collected with the LHCb experiment, corresponding to an integrated luminosity of 3 fb − 1 . The $$ {\varLambda}_b^0 $$ Λ b 0 baryons are reconstructed through the inclusive semileptonic decay $$ {\varLambda}_b^0 $$ Λ b 0 → $$ {\varLambda}_c^{+} $$ Λ c + μ − $$ \overline{\nu} $$ ν ¯ μ X . The production asymmetry is measured both in intervals of rapidity in the range 2 . 15 < y < 4 . 10 and transverse momentum in 2 < p T < 27 GeV/ c . The results are found to be incompatible with symmetric production with a significance of 5.8 standard deviations for both $$ \sqrt{s} $$ s = 7 and 8 TeV data, assuming no CP violation in the decay. There is evidence for a trend as a function of rapidity with a significance of 4 standard deviations. Comparisons to predictions from hadronisation models in P ythia and heavy-quark recombination are provided. This result constitutes the first observation of a particle-antiparticle asymmetry in b -hadron production at LHC energies. 
    more » « less
  3. Kim, Y. ; Moon, D.H. (Ed.)
    In this contribution we present a resummation of the Quantum Chromodynamics (QCD) equation of state from lattice simulations at imaginary chemical potentials. We generalize the scheme introduced in a previous work [1], to the case of non-zero strangeness chemical potential. We present continuum extrapolated results for thermodynamic observables in the temperature range 130MeV ≤ T ≤ 280 MeV, for chemical potentials up to μ B / T = 3:5, along the strangeness neutral line. Furthermore, we relax the constraint of strangeness neutrality, by extrapolating to small values of the strangeness-to-baryon-number ratio R = n S / n B . 
    more » « less
  4. null (Ed.)
    Salt metathesis reactions between a low-valent rhenium( i ) complex, Na[Re(η 5 -Cp)(BDI)] (BDI = N , N ′-bis(2,6-diisopropylphenyl)-3,5-dimethyl-β-diketiminate), and a series of amidinate-supported tetrylenes of the form ECl[PhC(N t Bu) 2 ] (E = Si, Ge, Sn) led to rhenium metallotetrylenes Re(E[PhC(N t Bu) 2 ])(η 5 -Cp)(BDI) (E = Si ( 1a ), Ge ( 2 ), Sn ( 4 )) with varying extents of Re–E multiple bonding. Whereas the rhenium–stannylene 4 adopts a σ-metallotetrylene arrangement featuring a Re–E single bond, the rhenium–silylene ( 1a ) and –germylene ( 2 ) both engage in π-interactions to form short Re–E multiple bonds. Temperature was found to play a crucial role in reactions between Na[Re(η 5 -Cp)(BDI)] and SiCl[PhC(N t Bu) 2 ], as manipulation of reaction conditions led to isolation of an unusual rhenium–silane, (BDI)Re(μ-η 5 :η 1 -C 5 H 4 )(SiH[PhC(N t Bu) 2 ]) ( 1b ) and a dinitrogen bridged rhenium–silylene, (η 5 -Cp)(BDI)Re(μ-N 2 )Si[PhC(N t Bu) 2 ] ( 1c ), in addition to 1a . Finally, the reaction of Na[Re(η 5 -Cp)(BDI)] with GeCl 2 ·dioxane led to a rare μ 2 -tetrelido complex, μ 2 -Ge[Re(η 5 -Cp)(BDI)] 2 ( 3 ). Bonding interactions within these complexes are discussed through the lens of various spectroscopic, structural, and computational investigations. 
    more » « less
  5. A bstract The production of the W ± bosons measured in p–Pb collisions at a centre-of-mass energy per nucleon–nucleon collision $$ \sqrt{s_{\textrm{NN}}} $$ s NN = 8 . 16 TeV and Pb–Pb collisions at $$ \sqrt{s_{\textrm{NN}}} $$ s NN = 5 . 02 TeV with ALICE at the LHC is presented. The W ± bosons are measured via their muonic decay channel, with the muon reconstructed in the pseudorapidity region − 4 < $$ {\eta}_{\textrm{lab}}^{\mu } $$ η lab μ < − 2 . 5 with transverse momentum $$ {p}_{\textrm{T}}^{\mu } $$ p T μ > 10 GeV /c . While in Pb–Pb collisions the measurements are performed in the forward (2 . 5 < $$ {y}_{\textrm{cms}}^{\mu } $$ y cms μ < 4) rapidity region, in p–Pb collisions, where the centre-of-mass frame is boosted with respect to the laboratory frame, the measurements are performed in the backward ( − 4 . 46 < $$ {y}_{\textrm{cms}}^{\mu } $$ y cms μ < − 2 . 96) and forward (2 . 03 < $$ {y}_{\textrm{cms}}^{\mu } $$ y cms μ < 3 . 53) rapidity regions. The W − and W + production cross sections, lepton-charge asymmetry, and nuclear modification factors are evaluated as a function of the muon rapidity. In order to study the production as a function of the p–Pb collision centrality, the production cross sections of the W − and W + bosons are combined and normalised to the average number of binary nucleon–nucleon collision 〈 N coll 〉. In Pb–Pb collisions, the same measurements are presented as a function of the collision centrality. Study of the binary scaling of the W ± -boson cross sections in p–Pb and Pb–Pb collisions is also reported. The results are compared with perturbative QCD calculations, with and without nuclear modifications of the Parton Distribution Functions (PDFs), as well as with available data at the LHC. Significant deviations from the theory expectations are found in the two collision systems, indicating that the measurements can provide additional constraints for the determination of nuclear PDFs and in particular of the light-quark distributions. 
    more » « less