skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: A comprehensive and synthetic dataset for global, regional, and national greenhouse gas emissions by sector 1970–2018 with an extension to 2019
Abstract. To track progress towards keeping global warming well below 2 ∘C or even 1.5 ∘C, as agreed in the Paris Agreement, comprehensiveup-to-date and reliable information on anthropogenic emissions and removalsof greenhouse gas (GHG) emissions is required. Here we compile a new synthetic dataset on anthropogenic GHG emissions for 1970–2018 with afast-track extension to 2019. Our dataset is global in coverage and includesCO2 emissions, CH4 emissions, N2O emissions, as well as those from fluorinated gases (F-gases: HFCs, PFCs, SF6, NF3) andprovides country and sector details. We build this dataset from the version 6 release of the Emissions Database for Global Atmospheric Research (EDGAR v6) and three bookkeeping models for CO2 emissions from land use,land-use change, and forestry (LULUCF). We assess the uncertainties of global greenhouse gases at the 90 % confidence interval (5th–95thpercentile range) by combining statistical analysis and comparisons ofglobal emissions inventories and top-down atmospheric measurements with anexpert judgement informed by the relevant scientific literature. We identifyimportant data gaps for F-gas emissions. The agreement between our bottom-up inventory estimates and top-downatmospheric-based emissions estimates is relatively close for some F-gasspecies (∼ 10 % or less), but estimates can differ by an order of magnitude or more for others. Our aggregated F-gas estimate is about 10 % lower than top-down estimates in recent years. However, emissions from excluded F-gas species such aschlorofluorocarbons (CFCs) or hydrochlorofluorocarbons (HCFCs) arecumulatively larger than the sum of the reported species. Using globalwarming potential values with a 100-year time horizon from the Sixth Assessment Report by the Intergovernmental Panel on Climate Change (IPCC),global GHG emissions in 2018 amounted to 58 ± 6.1 GtCO2 eq.consisting of CO2 from fossil fuel combustion and industry (FFI) 38 ± 3.0 GtCO2, CO2-LULUCF 5.7 ± 4.0 GtCO2, CH4 10 ± 3.1 GtCO2 eq., N2O2.6 ± 1.6 GtCO2 eq., and F-gases 1.3 ± 0.40 GtCO2 eq. Initial estimates suggest further growth of 1.3 GtCO2 eq. in GHG emissions to reach 59 ± 6.6 GtCO2 eq. by 2019. Our analysis ofglobal trends in anthropogenic GHG emissions over the past 5 decades (1970–2018) highlights a pattern of varied but sustained emissions growth. There is high confidence that global anthropogenic GHG emissions haveincreased every decade, and emissions growth has been persistent across the different (groups of) gases. There is also high confidence that globalanthropogenic GHG emissions levels were higher in 2009–2018 than in any previous decade and that GHG emissions levels grew throughout the most recent decade. While the average annual GHG emissions growth rate slowed between2009 and 2018 (1.2 % yr−1) compared to 2000–2009 (2.4 % yr−1), the absolute increase in average annual GHG emissions by decade was neverlarger than between 2000–2009 and 2009–2018. Our analysis further revealsthat there are no global sectors that show sustained reductions in GHGemissions. There are a number of countries that have reduced GHG emissionsover the past decade, but these reductions are comparatively modest andoutgrown by much larger emissions growth in some developing countries suchas China, India, and Indonesia. There is a need to further develop independent, robust, and timely emissions estimates across all gases. As such, tracking progress in climate policy requires substantial investmentsin independent GHG emissions accounting and monitoring as well as in national and international statistical infrastructures. The data associatedwith this article (Minx et al., 2021) can be found at https://doi.org/10.5281/zenodo.5566761.  more » « less
Award ID(s):
1903722
NSF-PAR ID:
10336593
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Earth System Science Data
Volume:
13
Issue:
11
ISSN:
1866-3516
Page Range / eLocation ID:
5213 to 5252
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions andtheir redistribution among the atmosphere, ocean, and terrestrial biospherein a changing climate is critical to better understand the global carboncycle, support the development of climate policies, and project futureclimate change. Here we describe and synthesize datasets and methodology toquantify the five major components of the global carbon budget and theiruncertainties. Fossil CO2 emissions (EFOS) are based on energystatistics and cement production data, while emissions from land-use change(ELUC), mainly deforestation, are based on land use and land-use changedata and bookkeeping models. Atmospheric CO2 concentration is measureddirectly, and its growth rate (GATM) is computed from the annualchanges in concentration. The ocean CO2 sink (SOCEAN) is estimatedwith global ocean biogeochemistry models and observation-baseddata products. The terrestrial CO2 sink (SLAND) is estimated withdynamic global vegetation models. The resulting carbon budget imbalance(BIM), the difference between the estimated total emissions and theestimated changes in the atmosphere, ocean, and terrestrial biosphere, is ameasure of imperfect data and understanding of the contemporary carboncycle. All uncertainties are reported as ±1σ. For the firsttime, an approach is shown to reconcile the difference in our ELUCestimate with the one from national greenhouse gas inventories, supportingthe assessment of collective countries' climate progress. For the year 2020, EFOS declined by 5.4 % relative to 2019, withfossil emissions at 9.5 ± 0.5 GtC yr−1 (9.3 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 0.9 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission of10.2 ± 0.8 GtC yr−1 (37.4 ± 2.9 GtCO2). Also, for2020, GATM was 5.0 ± 0.2 GtC yr−1 (2.4 ± 0.1 ppm yr−1), SOCEAN was 3.0 ± 0.4 GtC yr−1, and SLANDwas 2.9 ± 1 GtC yr−1, with a BIM of −0.8 GtC yr−1. Theglobal atmospheric CO2 concentration averaged over 2020 reached 412.45 ± 0.1 ppm. Preliminary data for 2021 suggest a rebound in EFOSrelative to 2020 of +4.8 % (4.2 % to 5.4 %) globally. Overall, the mean and trend in the components of the global carbon budgetare consistently estimated over the period 1959–2020, but discrepancies ofup to 1 GtC yr−1 persist for the representation of annual tosemi-decadal variability in CO2 fluxes. Comparison of estimates frommultiple approaches and observations shows (1) a persistent largeuncertainty in the estimate of land-use changes emissions, (2) a lowagreement between the different methods on the magnitude of the landCO2 flux in the northern extra-tropics, and (3) a discrepancy betweenthe different methods on the strength of the ocean sink over the lastdecade. This living data update documents changes in the methods and datasets used in this new global carbon budget and the progress in understandingof the global carbon cycle compared with previous publications of this dataset (Friedlingstein et al., 2020, 2019; LeQuéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). Thedata presented in this work are available at https://doi.org/10.18160/gcp-2021 (Friedlingstein et al., 2021). 
    more » « less
  2. Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions andtheir redistribution among the atmosphere, ocean, and terrestrial biosphere– the “global carbon budget” – is important to better understand theglobal carbon cycle, support the development of climate policies, andproject future climate change. Here we describe data sets and methodology toquantify the five major components of the global carbon budget and theiruncertainties. Fossil CO2 emissions (EFF) are based on energystatistics and cement production data, while emissions from land use change(ELUC), mainly deforestation, are based on land use and land use changedata and bookkeeping models. Atmospheric CO2 concentration is measureddirectly and its growth rate (GATM) is computed from the annual changesin concentration. The ocean CO2 sink (SOCEAN) and terrestrialCO2 sink (SLAND) are estimated with global process modelsconstrained by observations. The resulting carbon budget imbalance(BIM), the difference between the estimated total emissions and theestimated changes in the atmosphere, ocean, and terrestrial biosphere, is ameasure of imperfect data and understanding of the contemporary carboncycle. All uncertainties are reported as ±1σ. For the lastdecade available (2009–2018), EFF was 9.5±0.5 GtC yr−1,ELUC 1.5±0.7 GtC yr−1, GATM 4.9±0.02 GtC yr−1 (2.3±0.01 ppm yr−1), SOCEAN 2.5±0.6 GtC yr−1, and SLAND 3.2±0.6 GtC yr−1, with a budgetimbalance BIM of 0.4 GtC yr−1 indicating overestimated emissionsand/or underestimated sinks. For the year 2018 alone, the growth in EFF wasabout 2.1 % and fossil emissions increased to 10.0±0.5 GtC yr−1, reaching 10 GtC yr−1 for the first time in history,ELUC was 1.5±0.7 GtC yr−1, for total anthropogenicCO2 emissions of 11.5±0.9 GtC yr−1 (42.5±3.3 GtCO2). Also for 2018, GATM was 5.1±0.2 GtC yr−1 (2.4±0.1 ppm yr−1), SOCEAN was 2.6±0.6 GtC yr−1, and SLAND was 3.5±0.7 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 407.38±0.1 ppm averaged over 2018. For 2019, preliminary data for the first 6–10 months indicate a reduced growth in EFF of +0.6 % (range of−0.2 % to 1.5 %) based on national emissions projections for China, theUSA, the EU, and India and projections of gross domestic product correctedfor recent changes in the carbon intensity of the economy for the rest ofthe world. Overall, the mean and trend in the five components of the globalcarbon budget are consistently estimated over the period 1959–2018, butdiscrepancies of up to 1 GtC yr−1 persist for the representation ofsemi-decadal variability in CO2 fluxes. A detailed comparison amongindividual estimates and the introduction of a broad range of observationsshows (1) no consensus in the mean and trend in land use change emissionsover the last decade, (2) a persistent low agreement between the differentmethods on the magnitude of the land CO2 flux in the northernextra-tropics, and (3) an apparent underestimation of the CO2variability by ocean models outside the tropics. This living data updatedocuments changes in the methods and data sets used in this new globalcarbon budget and the progress in understanding of the global carbon cyclecompared with previous publications of this data set (Le Quéré etal., 2018a, b, 2016, 2015a, b, 2014, 2013). The data generated bythis work are available at https://doi.org/10.18160/gcp-2019 (Friedlingsteinet al., 2019). 
    more » « less
  3. Among many anthropogenic sources of greenhouse gases (GHG), landfill emissions, consisting of methane (CH4) and carbon dioxide (CO2), are one of the major contributors of anthropogenic GHG. In recent years, various innovative landfill biocovers have been investigated and developed to mitigate the emissions of methane (CH4) from municipal solid waste (MSW) landfills. However, the problem of CO2 emissions [which constitute about 40% of landfill gas (LFG)] from MSW landfills still remains unresolved. An innovative cover system which consists of basic oxygen furnace (BOF) slag with biochar amended soil is being developed to mitigate CH4 and CO2 emissions from landfills. The biochar amended soil is effective in mitigating CH4 emissions by microbial methane oxidation, while BOF slag could be effective in sequestering CO2 emissions by carbonation mechanisms. However, the properties of BOF slag vary based on several factors such as mineralogical composition of slag, particle size, moisture content, and temperature. In this study, CO2 sequestration potential of BOF slag was evaluated under synthetic LFG condition. The performance of the BOF slag in sequestering CO2 under different moisture condition was also examined. The results showed that BOF slag can sequester substantial amount of CO2 under LFG condition. The study also enlightened the importance of moisture for initiating carbonation reaction; however, the moisture alone was not the controlling parameter for CO2 sequestration. The mineralogy of the BOF slag plays an important role in determining CO2 sequestration capacity of the slag. 
    more » « less
  4. Abstract

    Agricultural soils play a dual role in regulating the Earth's climate by releasing or sequestering carbon dioxide (CO2) in soil organic carbon (SOC) and emitting non‐CO2greenhouse gases (GHGs) such as nitrous oxide (N2O) and methane (CH4). To understand how agricultural soils can play a role in climate solutions requires a comprehensive assessment of net soil GHG balance (i.e., sum of SOC‐sequestered CO2and non‐CO2GHG emissions) and the underlying controls. Herein, we used a model‐data integration approach to understand and quantify how natural and anthropogenic factors have affected the magnitude and spatiotemporal variations of the net soil GHG balance in U.S. croplands during 1960–2018. Specifically, we used the dynamic land ecosystem model for regional simulations and used field observations of SOC sequestration rates and N2O and CH4emissions to calibrate, validate, and corroborate model simulations. Results show that U.S. agricultural soils sequestered Tg CO2‐C year−1in SOC (at a depth of 3.5 m) during 1960–2018 and emitted Tg N2O‐N year−1and Tg CH4‐C year−1, respectively. Based on the GWP100 metric (global warming potential on a 100‐year time horizon), the estimated national net GHG emission rate from agricultural soils was Tg CO2‐eq year−1, with the largest contribution from N2O emissions. The sequestered SOC offset ~28% of the climate‐warming effects resulting from non‐CO2GHG emissions, and this offsetting effect increased over time. Increased nitrogen fertilizer use was the dominant factor contributing to the increase in net GHG emissions during 1960–2018, explaining ~47% of total changes. In contrast, reduced cropland area, the adoption of agricultural conservation practices (e.g., reduced tillage), and rising atmospheric CO2levels attenuated net GHG emissions from U.S. croplands. Improving management practices to mitigate N2O emissions represents the biggest opportunity for achieving net‐zero emissions in U.S. croplands. Our study highlights the importance of concurrently quantifying SOC‐sequestered CO2and non‐CO2GHG emissions for developing effective agricultural climate change mitigation measures.

     
    more » « less
  5. Abstract

    Grassland ecosystems play an essential role in climate regulation through carbon (C) storage in plant and soil. But, anthropogenic practices such as livestock grazing, grazing related excreta nitrogen (N) deposition, and manure/fertilizer N application have the potential to reduce the effectiveness of grassland C sink through increased nitrous oxide (N2O) and methane (CH4) emissions. Although the effect of anthropogenic activities on net greenhouse gas (GHG) fluxes in grassland ecosystems have been investigated at local to regional scales, estimates of net GHG balance at the global scale remains uncertain. With the data-model framework integrating empirical estimates of livestock CH4emissions with process-based modeling estimates of land CO2, N2O and CH4fluxes, we examined the overall global warming potential (GWP) of grassland ecosystems during 1961–2010. We then quantified the grassland-specific and regional variations to identify hotspots of GHG fluxes. Our results show that, over a 100-year time horizon, grassland ecosystems sequestered a cumulative total of 113.9 Pg CO2-eq in plant and soil, but then released 91.9 Pg CO2-eq to the atmosphere, offsetting 81% of the net CO2sink. We also found large grassland-specific variations in net GHG fluxes, withpasturelandsacting as a small GHG source of 1.52 ± 143 Tg CO2-eq yr−1(mean ± 1.0 s.d.) andrangelandsa strong GHG sink (−442 ± 266 Tg CO2-eq yr−1) during 1961–2010. Regionally, Europe acted as a GHG source of 23 ± 10 Tg CO2-eq yr−1, while other regions (i.e. Africa, Southern Asia) were strong GHG sinks during 2001–2010. Our study highlights the importance of considering regional and grassland-specific differences in GHG fluxes for guiding future management and climate mitigation strategies in global grasslands.

     
    more » « less