skip to main content


Title: Breaking Down Walls of Text: How Can NLP Benefit Consumer Privacy?
Decomposable tasks are complex and comprise of a hierarchy of sub-tasks. Spoken intent prediction, for example, combines automatic speech recognition and natural language understanding. Existing benchmarks, however, typically hold out examples for only the surface-level sub-task. As a result, models with similar performance on these benchmarks may have unobserved performance differences on the other sub-tasks. To allow insightful comparisons between competitive end-to-end architectures, we propose a framework to construct robust test sets using coordinate ascent over sub-task specific utility functions. Given a dataset for a decomposable task, our method optimally creates a test set for each sub-task to individually assess sub-components of the end-to-end model. Using spoken language understanding as a case study, we generate new splits for the Fluent Speech Commands and Snips SmartLights datasets. Each split has two test sets: one with held-out utterances assessing natural language understanding abilities, and one with heldout speakers to test speech processing skills. Our splits identify performance gaps up to 10% between end-to-end systems that were within 1% of each other on the original test sets. These performance gaps allow more realistic and actionable comparisons between different architectures, driving future model development. We release our splits and tools for the community  more » « less
Award ID(s):
1914486
NSF-PAR ID:
10336790
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Computational linguistics
ISSN:
1396-965X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Decomposable tasks are complex and comprise of a hierarchy of sub-tasks. Spoken intent prediction, for example, combines automatic speech recognition and natural language understanding. Existing benchmarks, however, typically hold out examples for only the surface-level sub-task. As a result, models with similar performance on these benchmarks may have unobserved performance differences on the other sub-tasks. To allow insightful comparisons between competitive end-to-end architectures, we propose a framework to construct robust test sets using coordinate ascent over sub-task specific utility functions. Given a dataset for a decomposable task, our method optimally creates a test set for each sub-task to individually assess sub-components of the end-to-end model. Using spoken language understanding as a case study, we generate new splits for the Fluent Speech Commands and Snips SmartLights datasets. Each split has two test sets: one with held-out utterances assessing natural language understanding abilities, and one with heldout speakers to test speech processing skills. Our splits identify performance gaps up to 10% between end-to-end systems that were within 1% of each other on the original test sets. These performance gaps allow more realistic and actionable comparisons between different architectures, driving future model development. We release our splits and tools for the community.1 
    more » « less
  2. RNN Tranducer (RNN-T) technology is very popular for building deployable models for end-to-end (E2E) automatic speech recognition (ASR) and spoken language understanding (SLU). Since these are E2E models operating on speech directly, there remains a potential to improve their performance using purely text based models like BERT, which have strong language understanding capabilities. In this paper, we propose a new training criteria for RNN-T based E2E ASR and SLU to transfer BERT’s knowledge into these systems. In the first stage of our proposed mechanism, we improve ASR performance by using a fine-grained, tokenwise knowledge transfer from BERT. In the second stage, we fine-tune the ASR model for SLU such that the above knowledge is explicitly utilized by the RNN-T model for improved performance. Our techniques improve ASR performance on the Switchboard and CallHome test sets of the NIST Hub5 2000 evaluation and on the recently released SLURP dataset on which we achieve a new state-of-the-art performance. For SLU, we show significant improvements on the SLURP slot filling task, outperforming HuBERT-base and reaching a performance close to HuBERTlarge. Compared to large transformer based speech models like HuBERT, our model is significantly more compact and uses only 300 hours of speech pretraining data. 
    more » « less
  3. INTRODUCTION: Apollo-11 (A-11) was the first manned space mission to successfully bring astronauts to the moon and return them safely. Effective team based communications is required for mission specialists to work collaboratively to learn, engage, and solve complex problems. As part of NASA’s goal in assessing team and mission success, all vital speech communications between these personnel were recorded using the multi-track SoundScriber system onto analog tapes, preserving their contribution in the success of one of the greatest achievements in human history. More than +400 personnel served as mission specialists/support who communicated across 30 audio loops, resulting in +9k hours of data for A-11. To ensure success of this mission, it was necessary for teams to communicate, learn, and address problems in a timely manner. Previous research has found that compatibility of individual personalities within teams is important for effective team collaboration of those individuals. Hence, it is essential to identify each speaker’s role during an Apollo mission and analyze group communications for knowledge exchange and problem solving to achieve a common goal. Assessing and analyzing speaker roles during the mission can allow for exploring engagement analysis for multi-party speaker situations. METHOD: The UTDallas Fearless steps Apollo data is comprised of 19,000 hours (A-11,A-13,A-1) possessing unique and multiple challenges as it is characterized by severe noise and degradation as well as overlap instances over the 30 channels. For our study, we have selected a subset of 100 hours manually transcribed by professional annotators for speaker labels. The 100 hours are obtained from three mission critical events: 1. Lift-Off (25 hours) 2. Lunar-Landing (50 hours) 3. Lunar-Walking (25 hours). Five channels of interest, out of 30 channels were selected with the most speech activity, the primary speakers operating these five channels are command/owners of these channels. For our analysis, we select five speaker roles: Flight Director (FD), Capsule Communicator (CAPCOM), Guidance, Navigation and, Control (GNC), Electrical, environmental, and consumables manager (EECOM), and Network (NTWK). To track and tag individual speakers across our Fearless Steps audio dataset, we use the concept of ‘where’s Waldo’ to identify all instances of our speakers-of-interest across a cluster of other speakers. Also, to understand speaker roles of our speaker-of-interests, we use speaker duration of primary speaker vs secondary speaker and speaker turns as our metrics to determine the role of the speaker and to understand their responsibility during the three critical phases of the mission. This enables a content linking capability as well as provide a pathway to analyzing group engagement, group dynamics of people working together in an enclosed space, psychological effects, and cognitive analysis in such individuals. IMPACT: NASA’s Apollo Program stands as one of the most significant contributions to humankind. This collection opens new research options for recognizing team communication, group dynamics, and human engagement/psychology for future deep space missions. Analyzing team communications to achieve such goals would allow for the formulation of educational and training technologies for assessment of STEM knowledge, task learning, and educational feedback. Also, identifying these personnel can help pay tribute and yield personal recognition to the hundreds of notable engineers and scientist who made this feat possible. ILLUSTRATION: In this work, we propose to illustrate how a pre-trained speech/language network can be used to obtain powerful speaker embeddings needed for speaker diarization. This framework is used to build these learned embeddings to label unique speakers over sustained audio streams. To train and test our system, we will make use of Fearless Steps Apollo corpus, allowing us to effectively leverage a limited label information resource (100 hours of labeled data out of +9000 hours). Furthermore, we use the concept of 'Finding Waldo' to identify key speakers of interest (SOI) throughout the Apollo-11 mission audio across multiple channel audio streams. 
    more » « less
  4. Abstract Customizing participation-focused pediatric rehabilitation interventions is an important but also complex and potentially resource intensive process, which may benefit from automated and simplified steps. This research aimed at applying natural language processing to develop and identify a best performing predictive model that classifies caregiver strategies into participation-related constructs, while filtering out non-strategies. We created a dataset including 1,576 caregiver strategies obtained from 236 families of children and youth (11–17 years) with craniofacial microsomia or other childhood-onset disabilities. These strategies were annotated to four participation-related constructs and a non-strategy class. We experimented with manually created features (i.e., speech and dependency tags, predefined likely sets of words, dense lexicon features (i.e., Unified Medical Language System (UMLS) concepts)) and three classical methods (i.e., logistic regression, naïve Bayes, support vector machines (SVM)). We tested a series of binary and multinomial classification tasks applying 10-fold cross-validation on the training set (80%) to test the best performing model on the held-out test set (20%). SVM using term frequency-inverse document frequency (TF-IDF) was the best performing model for all four classification tasks, with accuracy ranging from 78.10 to 94.92% and a macro-averaged F1-score ranging from 0.58 to 0.83. Manually created features only increased model performance when filtering out non-strategies. Results suggest pipelined classification tasks (i.e., filtering out non-strategies; classification into intrinsic and extrinsic strategies; classification into participation-related constructs) for implementation into participation-focused pediatric rehabilitation interventions like Participation and Environment Measure Plus (PEM+) among caregivers who complete the Participation and Environment Measure for Children and Youth (PEM-CY). 
    more » « less
  5. End-to-end spoken language understanding (SLU) systems are typically trained on large amounts of data. In many practical scenarios, the amount of labeled speech is often limited as opposed to text. In this study, we investigate the use of non-parallel speech and text to improve the performance of dialog act recognition as an example SLU task. We propose a multiview architecture that can handle each modality separately. To effectively train on such data, this model enforces the internal speech and text encodings to be similar using a shared classifier. On the Switchboard Dialog Act corpus, we show that pretraining the classifier using large amounts of text helps learning better speech encodings, resulting in up to 40% relatively higher classification accuracies. We also show that when the speech embeddings from an automatic speech recognition (ASR) system are used in this framework, the speech-only accuracy exceeds the performance of ASR-text based tests up to 15% relative and approaches the performance of using true transcripts. 
    more » « less