Decomposable tasks are complex and comprise of a hierarchy of sub-tasks. Spoken intent prediction, for example, combines automatic speech recognition and natural language understanding. Existing benchmarks, however, typically hold out examples for only the surface-level sub-task. As a result, models with similar performance on these benchmarks may have unobserved performance differences on the other sub-tasks. To allow insightful comparisons between competitive end-to-end architectures, we propose a framework to construct robust test sets using coordinate ascent over sub-task specific utility functions. Given a dataset for a decomposable task, our method optimally creates a test set for each sub-task to individually assess sub-components of the end-to-end model. Using spoken language understanding as a case study, we generate new splits for the Fluent Speech Commands and Snips SmartLights datasets. Each split has two test sets: one with held-out utterances assessing natural language understanding abilities, and one with heldout speakers to test speech processing skills. Our splits identify performance gaps up to 10% between end-to-end systems that were within 1% of each other on the original test sets. These performance gaps allow more realistic and actionable comparisons between different architectures, driving future model development. We release our splits and tools for the community
more »
« less
Rethinking End-to-End Evaluation of Decomposable Tasks: A Case Study on Spoken Language Understanding
Decomposable tasks are complex and comprise of a hierarchy of sub-tasks. Spoken intent prediction, for example, combines automatic speech recognition and natural language understanding. Existing benchmarks, however, typically hold out examples for only the surface-level sub-task. As a result, models with similar performance on these benchmarks may have unobserved performance differences on the other sub-tasks. To allow insightful comparisons between competitive end-to-end architectures, we propose a framework to construct robust test sets using coordinate ascent over sub-task specific utility functions. Given a dataset for a decomposable task, our method optimally creates a test set for each sub-task to individually assess sub-components of the end-to-end model. Using spoken language understanding as a case study, we generate new splits for the Fluent Speech Commands and Snips SmartLights datasets. Each split has two test sets: one with held-out utterances assessing natural language understanding abilities, and one with heldout speakers to test speech processing skills. Our splits identify performance gaps up to 10% between end-to-end systems that were within 1% of each other on the original test sets. These performance gaps allow more realistic and actionable comparisons between different architectures, driving future model development. We release our splits and tools for the community.1
more »
« less
- Award ID(s):
- 1914486
- PAR ID:
- 10336784
- Date Published:
- Journal Name:
- Interspeech
- ISSN:
- 2308-457X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
RNN Tranducer (RNN-T) technology is very popular for building deployable models for end-to-end (E2E) automatic speech recognition (ASR) and spoken language understanding (SLU). Since these are E2E models operating on speech directly, there remains a potential to improve their performance using purely text based models like BERT, which have strong language understanding capabilities. In this paper, we propose a new training criteria for RNN-T based E2E ASR and SLU to transfer BERT’s knowledge into these systems. In the first stage of our proposed mechanism, we improve ASR performance by using a fine-grained, tokenwise knowledge transfer from BERT. In the second stage, we fine-tune the ASR model for SLU such that the above knowledge is explicitly utilized by the RNN-T model for improved performance. Our techniques improve ASR performance on the Switchboard and CallHome test sets of the NIST Hub5 2000 evaluation and on the recently released SLURP dataset on which we achieve a new state-of-the-art performance. For SLU, we show significant improvements on the SLURP slot filling task, outperforming HuBERT-base and reaching a performance close to HuBERTlarge. Compared to large transformer based speech models like HuBERT, our model is significantly more compact and uses only 300 hours of speech pretraining data.more » « less
-
Dialog history enhances downstream classification performance in both speech and text based dialog systems. However, there still exists a gap in dialog history integration in a fully end-to-end (E2E) spoken dialog system (SDS) versus a textual dia- log system. Text-based dialog systems use large language models (LLMs) to encode long-range dependencies by attending to the entire conversation as a contiguous token sequence. This is not possible in an E2E SDS, as speech sequences can be intractably long. We propose a convolution subsampling approach to make the speech sequence of a conversation tractable and use a conformer to attend to the speech-based conversation in a fine-grained manner. This model is further enhanced via a conversation-level knowledge transfer from a LLM using a token-level alignment strategy. Finetuning the E2E model pretrained this way gives significant gains, of up to 8%, over strong non-contextual baselines in the E2E dialog act classification task on two datasets.more » « less
-
Health-related speech datasets are often small and varied in focus. This makes it difficult to leverage them to effectively support healthcare goals. Robust transfer of linguistic features across different datasets orbiting the same goal carries potential to address this concern. To test this hypothesis, we experiment with domain adaptation (DA) techniques on heterogeneous spoken language data to evaluate generalizability across diverse datasets for a common task: dementia detection. We find that adapted models exhibit better performance across conversational and task-oriented datasets. The feature-augmented DA method achieves a 22% increase in accuracy adapting from a conversational to task-specific dataset compared to a jointly trained baseline. This suggests promising capacity of these techniques to allow for productive use of disparate data for a complex spoken language healthcare task.more » « less
-
End-to-end spoken language understanding (SLU) systems are typically trained on large amounts of data. In many practical scenarios, the amount of labeled speech is often limited as opposed to text. In this study, we investigate the use of non-parallel speech and text to improve the performance of dialog act recognition as an example SLU task. We propose a multiview architecture that can handle each modality separately. To effectively train on such data, this model enforces the internal speech and text encodings to be similar using a shared classifier. On the Switchboard Dialog Act corpus, we show that pretraining the classifier using large amounts of text helps learning better speech encodings, resulting in up to 40% relatively higher classification accuracies. We also show that when the speech embeddings from an automatic speech recognition (ASR) system are used in this framework, the speech-only accuracy exceeds the performance of ASR-text based tests up to 15% relative and approaches the performance of using true transcripts.more » « less
An official website of the United States government

