skip to main content

Title: Disentangling types of lattice disorder impacting superconductivity in Sr 2 RuO 4 by quantitative local probes
The unconventional superconductivity in Sr 2 RuO 4 is infamously susceptible to suppression by small levels of disorder such that it has been most commonly studied in extremely high-purity bulk crystals. Here, we harness local structural and spectroscopic scanning transmission electron microscopy measurements in epitaxial thin films of Sr 2 RuO 4 to disentangle the impact of different types of crystalline disorder on superconductivity. We find that cation off-stoichiometry during growth gives rise to two distinct types of disorder: mixed-phase structural inclusions that accommodate excess ruthenium and ruthenium vacancies when the growth is ruthenium-deficient. Several superconducting films host mixed-phase intergrowths, suggesting this microstructural disorder has relatively little impact on superconductivity. In a non-superconducting film, on the other hand, we measure a high density of ruthenium-vacancies [Formula: see text] with no significant reduction in the crystallinity of the film. The results suggest that ruthenium vacancy disorder, which is hidden to many structural probes, plays an important role in suppressing superconductivity. We discuss the broader implications of our findings to guide the future synthesis of this and other layered systems.
; ; ; ; ; ; ; ; ; ;
Award ID(s):
2039380 2104427
Publication Date:
Journal Name:
APL Materials
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract One of the main developments in unconventional superconductivity in the past two decades has been the discovery that most unconventional superconductors form phase diagrams that also contain other strongly correlated states. Many systems of interest are therefore close to more than one instability, and tuning between the resultant ordered phases is the subject of intense research 1 . In recent years, uniaxial pressure applied using piezoelectric-based devices has been shown to be a particularly versatile new method of tuning 2,3 , leading to experiments that have advanced our understanding of the fascinating unconventional superconductor Sr 2 RuO 4 (refs.  4–9 ). Here we map out its phase diagram using high-precision measurements of the elastocaloric effect in what we believe to be the first such study including both the normal and the superconducting states. We observe a strong entropy quench on entering the superconducting state, in excellent agreement with a model calculation for pairing at the Van Hove point, and obtain a quantitative estimate of the entropy change associated with entry to a magnetic state that is observed in proximity to the superconductivity. The phase diagram is intriguing both for its similarity to those seen in other families of unconventionalmore »superconductors and for extra features unique, so far, to Sr 2 RuO 4 .« less
  2. The local structure of the highly “overdoped” 95 K superconductor Sr2CuO3.3determined by Cu K X-ray absorption fine structure (XAFS) at 62 K in magnetically oriented samples shows that 1) the magnetization is perpendicular to thecaxis; 2) at these levels of precision the Cu sublattice is tetragonal in agreement with the crystal structure; the O sublattice has 3) continuous -Cu-O- chains that orient perpendicular to an applied magnetic field; 4) approximately half-filled -Cu-O- chains that orient parallel to this field; 5) a substantial number of apical O vacancies; 6) O ions at some apical positions with expanded Cu-O distances; and 7) interstitial positions that imply highly displaced Sr ions. These results contradict the universally accepted features of cuprates that require intact CuO2planes, magnetization along thecaxis, and a termination of the superconductivity when the excess charge on the CuO2Cu ions exceeds 0.27. These radical differences in charge and structure demonstrate that this compound constitutes a separate class of Cu-O–based superconductors in which the superconductivity originates in a different, more complicated structural unit than CuO2planes while retaining exceptionally high transition temperatures.

  3. Phase pure PbZr 0.52 Ti 0.48 O 3 (PZT) films with up to 13 mol. % Nb were prepared on Pt-coated Si substrates using chemical solution deposition; charge compensation for Nb was accomplished by reducing the concentration of lead in the film. For high Nb doping levels, (1) superoxidation of the PZT film surface makes the PZT/Pt interface more p-type and, hence reduces electron injection over the Schottky barrier, (2) the bulk charge transport mechanism changes from electron trapping by Ti 4+ to hole migration between lead vacancies, and (3) the ionic conductivity due to migration of oxygen vacancies decreases. For [Formula: see text] Nb, electrical degradation was controlled via field-induced accumulation of oxygen vacancies near the cathode, which, in turn, leads to Schottky barrier lowering and electron trapping by Ti 4+ . In phase pure 13 mol. % Nb doped PZT films, on the other hand, the increase in the leakage current during electrical degradation was dominated by hole migration between lead vacancies ([Formula: see text]. A much lower lifetime and drastic increase in the leakage current upon electrical degradation was observed in mixed phase PNZT films, which was attributed to (1) a more electrically conductive pyrochlore phase and (2) amore »high concentration of lead vacancies.« less
  4. Abstract

    La0.7Sr0.3MnO3, a strong semi-metallic ferromagnet having robust spin polarization and magnetic transition temperature (TC) well above 300 K, has attracted significant attention as a possible candidate for a wide range of memory, spintronic, and multifunctional devices. Since varying the oxygen partial pressure during growth is likely to change the structural and other physical functionalities of La0.7Sr0.3MnO3(LSMO) films, here we report detailed investigations on structure, along with magnetic behavior of LSMO films with same thickness (~30 nm) but synthesized at various oxygen partial pressures: 10, 30, 50, 100, 150, 200 and 250 mTorr. The observation of only (00l) reflections without any secondary peaks in the XRD patterns confirms the high-quality synthesis of the above-mentioned films. Surface morphology of the films reveals that these films are very smooth with low roughness, the thin films synthesized at 150 mTorr having the lowest average roughness. The increasing of magneticTCand sharpness of the magnetic phase transitions with increasing oxygen growth pressure suggests that by decreasing the oxygen growth pressure leads to oxygen deficiencies in grown films which induce oxygen inhomogeneity. Thin films grown at 150 mTorr exhibits the highest magnetization withTC = 340 K as these thin films possess the lowest roughness and might exhibit lowest oxygen vacancies andmore »defects. Interpretation and significance of these results in the 30 nm LSMO thin films prepared at different oxygen growth pressures are also presented, along with the existence and growth pressure dependence of negative remanent magnetization (NRM) of the above-mentioned thin films.

    « less
  5. Even the particle world is not immune to identity politics. Bosons have been in a bit of an identity crisis, or so it has seemed since 1989 ( 1 ). Quantum mechanics requires bosons made of two paired electrons to either condense into a superfluid with a well-defined phase with zero electrical resistance or localize in an insulating state with infinite resistance. The direct transition from superconducting to insulating states was widely observed in a range of thin films ( 2 – 4 ). The most popular model for explaining these observations ( 5 ) claims that the destruction of superconductivity occurs when the resistance of the thin film exceeds a critical value. For bosons on the brink of localization, electrically insulating behavior is observed if the resistance is greater than the quantum of resistance, R q = h /4 e 2 , otherwise superconductivity persists, where h is Planck's constant and e is the electric charge. On page 1505 of this issue, Yang et al. ( 6 ) offer a counterexample by establishing that a bosonic metallic phase disrupts the superconductor-insulator transition (SIT) in the high-temperature superconductor YBa 2 Cu 3 O 7– x (YBCO).