skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seasonality of inundation in geographically isolated wetlands across the United States
Abstract Inundation area is a major control on the ecosystem services provisioned by geographically isolated wetlands. Despite its importance, there has not been any comprehensive study to map out the seasonal inundation characteristics of geographically isolated wetlands over the continental United States (CONUS). This study fills the aforementioned gap by evaluating the seasonality or the long-term intra-annual variations of wetland inundation in ten wetlandscapes across the CONUS. We also assess the consistency of these intra-annual variations. Finally, we evaluate the extent to which the seasonality can be explained based on widely available hydrologic fluxes. Our findings highlight significant intra-annual variations of inundation within most wetlandscapes, with a standard deviation of the long-term averaged monthly inundation area ranging from 15% to 151% of its mean across the wetlandscapes. Stark differences in inundation seasonality are observed between snow-affected vs. rain-fed wetlandscapes. The former usually shows the maximum monthly inundation in April following spring snowmelt (SM), while the latter experiences the maximum in February. Although the magnitude of inundation fraction has changed over time in several wetlandscapes, the seasonality of these wetlands shows remarkable constancy. Overall, commonly available regional hydrologic fluxes (e.g. rainfall, SM, and evapotranspiration) are found to be able to explain the inundation seasonality at wetlandscape scale with determination coefficients greater than 0.57 in 7 out of 10 wetlandscapes. Our methodology and presented results may be used to map inundation seasonality and consequently account for its impact on wetland functions.  more » « less
Award ID(s):
2019561
PAR ID:
10336891
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Environmental Research Letters
Volume:
17
Issue:
5
ISSN:
1748-9326
Page Range / eLocation ID:
054005
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Wetlands protect downstream waters by filtering excess nitrogen (N) generated from agricultural and urban activities. Many small ephemeral wetlands, also known as geographically isolated wetlands (GIWs), are hotspots of N retention but have received fewer legal protections due to their apparent isolation from jurisdictional waters. Here, we hypothesize that the isolation of the GIWs make them more efficient N filters, especially when considering transient hydrologic dynamics. We use a reduced complexity model with 30 years of remotely sensed monthly wetland inundation levels in 3700 GIWs across eight wetlandscapes in the US to show how consideration of transient hydrologic dynamics can increase N retention estimates by up to 130%, with greater retention magnification for the smaller wetlands. This effect is more pronounced in semi-arid systems such as the prairies in North Dakota, where transient assumptions lead to 1.8 times more retention, compared to humid landscapes like the North Carolina Pocosins where transient assumptions only lead to 1.4 times more retention. Our results highlight how GIWs have an outsized role in retaining nutrients, and this service is enhanced due to their hydrologic disconnectivity which must be protected to maintain the integrity of downstream waters. 
    more » « less
  2. The Amazon River basin harbors some of the world’s largest wetland complexes, which are of major importance for biodiversity, the water cycle and climate, and human activities. Accurate estimates of inundation extent and its variations across spatial and temporal scales are therefore fundamental to understand and manage the basin’s resources. More than fifty inundation estimates have been generated for this region, yet major differences exist among the datasets, and a comprehensive assessment of them is lacking. Here we present an intercomparison of 29 inundation datasets for the Amazon basin, based on remote sensing only, hydrological modeling, or multi-source datasets, with 18 covering the lowland Amazon basin (elevation < 500 m, which includes most Amazon wetlands), and 11 covering individual wetland complexes (subregional datasets). Spatial resolutions range from 12.5 m to 25 km, and temporal resolution from static to monthly, spanning up to a few decades. Overall, 31% of the lowland basin is estimated as subject to inundation by at least one dataset. The long-term maximum inundated area across the lowland basin is estimated at 599,700 ± 81,800 km² if considering the three higher quality SAR-based datasets, and 490,300 ± 204,800 km² if considering all 18 datasets. However, even the highest resolution SAR-based dataset underestimates the maximum values for individual wetland complexes, suggesting a basin-scale underestimation of ~10%. The minimum inundation extent shows greater disagreements among datasets than the maximum extent: 139,300 ± 127,800 km² for SAR-based ones and 112,392 ± 79,300 km² for all datasets. Discrepancies arise from differences among sensors, time periods, dates of acquisition, spatial resolution, and data processing algorithms. The median total area subject to inundation in medium to large river floodplains (drainage area > 1,000 km²) is 323,700 km². The highest spatial agreement is observed for floodplains dominated by open water such as along the lower Amazon River, whereas intermediate agreement is found along major vegetated floodplains fringing larger rivers (e.g., Amazon mainstem floodplain). Especially large disagreements exist among estimates for interfluvial wetlands (Llanos de Moxos, Pacaya-Samiria, Negro, Roraima), where inundation tends to be shallower and more variable in time. Our data intercomparison helps identify the current major knowledge gaps regarding inundation mapping in the Amazon and their implications for multiple applications. In the context of forthcoming hydrology-oriented satellite missions, we make recommendations for future developments of inundation estimates in the Amazon and present a WebGIS application (https://amazon-inundation.herokuapp.com/) we developed to provide user-friendly visualization and data acquisition of current Amazon inundation datasets. 
    more » « less
  3. Atmospheric methane (CH4) concentrations have gone through rapid changes since the last deglaciation; however, the reasons for abrupt increases around 14,700 and 11,600 years before present (yrs BP) are not fully understood. Concurrent with deglaciation, sea-level rise gradually inundated vast areas of the low-lying Beringian shelf. This transformation of what was once a terrestrial-permafrost tundra-steppe landscape, into coastal, and subsequently, marine environments led to new sources of CH4 from the region to the atmosphere. Here, we estimate, based on an extended geospatial analysis, the area of Beringian coastal wetlands in 1000-year intervals and their potential contribution to northern CH4 flux (based on present day CH4 fluxes from coastal wetland) during the past 20,000 years. At its maximum (∼14,000 yrs BP) we estimated CH4 fluxes from Beringia coastal wetlands to be 3.5 (+4.0/-1.9) Tg CH4 yr−1. This shifts the onset of CH4 fluxes from northern regions earlier, towards the Bølling-Allerød, preceding peak emissions from the formation of northern high latitude thermokarst lakes and wetlands. Emissions associated with the inundation of Beringian coastal wetlands better align with polar ice core reconstructions of northern hemisphere sources of atmospheric CH4 during the last deglaciation, suggesting a connection between rising sea level, coastal wetland expansion, and enhanced CH4 emissions. 
    more » « less
  4. Wetlands provide essential ecosystem services, including nutrient cycling, flood protection, and biodiversity support, that are sensitive to changes in wetland hydrology. Wetland hydrological inputs come from precipitation, groundwater discharge, and surface run-off. Changes to these inputs via climate variation, groundwater extraction, and land development may alter the timing and magnitude of wetland inundation. Here, we use a long-term (14-year) comparative study of 152 depressional wetlands in west-central Florida to identify sources of variation in wetland inundation during two key time periods, 2005–2009 and 2010–2018. These time periods are separated by the enactment of water conservation policies in 2009, which included regional reductions in groundwater extraction. We investigated the response of wetland inundation to the interactive effects of precipitation, groundwater extraction, surrounding land development, basin geomorphology, and wetland vegetation class. Results show that water levels were lower and hydroperiods were shorter in wetlands of all vegetation classes during the first (2005–2009) time period, which corresponded with low rainfall conditions and high rates of groundwater extraction. Under water conservation policies enacted in the second (2010–2018) time period, median wetland water depths increased 1.35 m and median hydroperiods increased from 46 % to 83 %. Water-level variation was additionally less sensitive to groundwater extraction. The increase in inundation differed among vegetation classes with some wetlands not displaying signs of hydrological recovery. After accounting for effects of several explanatory factors, inundation still varied considerably among wetlands, suggesting a diversity of hydrological regimes, and thus ecological function, among individual wetlands across the landscape. Policies seeking to balance human water demand with the preservation of depressional wetlands would benefit by recognizing the heightened sensitivity of wetland inundation to groundwater extraction during periods of low precipitation. 
    more » « less
  5. Groundwater extraction compromises the function of groundwater-dependent ecosystems, such as freshwater wetlands. Identifying whether groundwater conservation restores wetland hydrology is a first step toward rehabilitating impaired wetlands. In the Tampa Bay region of Florida (U.S.), groundwater extraction rates have been declining since 1998, partly in response to desiccation of wetlands and waterbodies. This study uses monthly water-level data from 152 depressional wetlands over 28 years (1991–2018) to identify trends in wetland inundation, determine whether those trends vary among wetlands historically exposed to different rates of groundwater extraction, and describe relationships between the timing and extent of cutbacks in groundwater extraction and the timing and extent of changes in wetland inundation. Many wetlands (57 %) exhibited increased inundation in response to cutbacks in groundwater extraction, indicating that water conservation measures are inducing recovery. Further, increased inundation began in most wetlands immediately upon, or within two years of, the time extraction cutbacks occurred, although some recovering wetlands exhibited longer lags. An additional 26 % of wetlands had steady-state water levels with inundation similar to that of reference wetlands, potentially revealing a population of wetlands hydrologically unimpaired by nearby groundwater extraction. Another subset of wetlands (14 %) with steady-state water depths exhibited increasing deviations from basin-full water levels, suggesting subsidence of the wetland basin. Active intervention beyond cutbacks in groundwater extraction may be necessary to restore this subset, whereas passive restoration (reducing extraction) appears adequate for the majority of impacted wetlands. Rising water levels may amplify surface-water connections among wetlands, with ecological and biogeochemical consequences both for individual wetlands and for the whole wetlandscape. As a host of human activities continue to rely on groundwater extraction, this study demonstrates the potential for, as well as variability in, hydrological recovery across a wetland-rich, low-relief landscape following the enactment of water conservation policies. 
    more » « less