skip to main content


Title: Molecular ecology of zebra mussel invasions: ZEBRA MUSSEL INVASIONS
Award ID(s):
0448827
PAR ID:
10337150
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Molecular Ecology
Volume:
15
Issue:
4
ISSN:
0962-1083
Page Range / eLocation ID:
1021 to 1031
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY Although zebra mussels (Dreissena polymorpha) initially colonized shallow habitats within the North American Great Lakes, quagga mussels (Dreissena bugensis) are becoming dominant in both shallow- and deep-water habitats. Shell morphology differs among zebra, shallow quagga and deep quagga mussels but functional consequences of such differences are unknown. We examined effects of shell morphology on locomotion for the three morphotypes on hard (typical of shallow habitats) and soft (characteristic of deep habitats) sedimentary substrates. We quantified morphology using the polar moment of inertia, a parameter used in calculating kinetic energy that describes shell area distribution and resistance to rotation. We quantified mussel locomotion by determining the ratio of rotational (Krot) to translational kinetic energy (Ktrans). On hard substrate, Krot:Ktrans of deep quagga mussels was fourfold greater than for the other morphotypes, indicating greater energy expenditure in rotation relative to translation. On soft substrate, Krot:Ktrans of deep quagga mussels was approximately one-third of that on hard substrate, indicating lower energy expenditure in rotation on soft substrate. Overall, our study demonstrates that shell morphology correlates with differences in locomotion (i.e. Krot:Ktrans) among morphotypes. Although deep quagga mussels were similar to zebra and shallow quagga mussels in terms of energy expenditure on sedimentary substrate, their morphology was energetically maladaptive for linear movement on hard substrate. As quagga mussels can possess two distinct morphotypes (i.e. shallow and deep morphs), they might more effectively utilize a broader range of substrates than zebra mussels, potentially enhancing their ability to colonize a wider range of habitats. 
    more » « less
  2. Abstract Aim

    The Hemiptera is the fifth‐largest insect order but among non‐native insect species is approximately tied with the Coleoptera as the most species‐rich insect order (Hemiptera comprise 20% more species than in world fauna). This over‐representation may result from high propagule pressure or from high species invasiveness. Here, we assess the reasons for over‐representation in this group by analysing geographical, temporal and taxonomic variation in numbers of historical invasions.

    Location

    Global.

    Method

    We assembled lists of historical Hemiptera invasions in 12 world regions, countries or islands (Australia, Chile, Europe, New Zealand, North America, South Africa, South Korea, Japan and the Galapagos, Hawaiian, Okinawa and Ogasawara Islands) and border interception data from nine countries (Australia, Canada, European Union, United Kingdom, Hawaii, Japan, New Zealand, South Korea, USA mainland and South Africa). Using these data, we identified hemipteran superfamilies that are historically over‐represented among established non‐native species, and superfamilies that are over‐represented among arrivals (proxied by interceptions). We also compared temporal patterns of establishments among hemipteran suborders and among regions.

    Results

    Across all regions, patterns of over‐ and under‐representation were similar. The Aphidoidea, Coccoidea, Aleyrodoidea, Cimicoidea and Phylloxeroida were over‐represented among non‐native species. These same superfamilies were not consistently over‐represented among intercepted species indicating that propagule pressure does not completely explain the tendency of some Hemiptera to be over‐represented among invasions. Asexual reproduction is common in most over‐represented superfamilies and this trait may be key to explaining high invasion success in these superfamilies.

    Conclusions

    We conclude that both propagule pressure and species invasiveness are drivers of high invasion success in the Sternorrhyncha suborder (aphids, scales, whiteflies) and this group plays a major role in the exceptional invasion success of Hemiptera in general. The high historical rates of invasion by Sternorrhyncha species provide justification for biosecurity measure focusing on exclusion of this group.

     
    more » « less