For some time, scholars who are guided by critical theories and perspectives have called out how white supremacist ideologies and systemic racism work to (re)produce societal inequities and educational injustices across science learning contexts in the United States. Given the sociopolitical nature of society, schooling, and science education, it is important to address the racist and settled history of scientific disciplines and science education. To this end, we take an antiracist stance on science teaching and learning and seek to disrupt forms of systemic racism in science classrooms. Since teachers do much of the daily work of transforming science education for minoritized learners, we advocate for preparing teachers who understand what it means to engage in antiracist, justice-oriented science teaching. In this article, we share our framework for supporting preservice teachers in understanding, developing, and implementing antiracist teaching dispositions and instructional practices. In alignment with other researchers in teacher education who emphasize the importance of anchoring teacher education practice and research in prominent educational theory, we highlight the theories undergirding our approach to antiracist science teaching. We offer considerations for how researchers and science teacher educators can use this framework to transform science teacher education.
more »
« less
“Caring as Class: Resolving the Emotional Paradox of Climate Change Education.” Journal of Sustainability Education.”
What will it take to create a transformation in human society to coexist with our human and more-than-human earth kin?” – Journal of Sustainability Education call for papers 2021 The question of what it will take to induce societal transformation in the face of climate change is daunting to consider, intimidating to try and answer in the abstract, and potentially paralyzing to try and address through teaching, research, and practice. That is, in response to the JSE editors’ question, we may be tempted to simply curl up in a ball and rock back and forth in search of temporary comfort and escape. Yet, in crafting the subtitle for this issue on climate change, JSE’s editorial team has pointed to multiple paths forward: resistance, recuperation, and resilience. Each of those terms have their roots in sustained action, with the Latin meaning of the ‘re’ prefix based in doing again and again (dictionary.com, 1995). The same implication is present with kindred concepts often used in the realm of grappling with climate change like regeneration, reparations, restoration, recentering, and renewal. Altogether the emphasis on sustained actions, with each term in its own way looking both backwards and forwards in time and knowledge, raises a very direct challenge for educators: how do we help students (and ourselves) prepare to engage in sustained action in the face of climate change and its root causes of extraction, inequity, racism and colonialism? In this article, we describe our response to this question, admittedly very much a work in progress. We first elaborate on the conceptual and practical challenges in preparing students for sustained action to imagine and enact the future. Paramount among these challenges is acknowledging that climate change cannot be addressed in an equitable way without also addressing its roots in colonization, racism, sexism, and extractive capitalism. Next, we discuss our integrated teaching-research-engagement approach, developed as part of a US National Science Foundation CAREER award project aimed at examining the potential role of compassion as a transformative practice for reducing long-term risks from natural hazards and climate change. Then, we provide summaries of and reflections on a pair of courses taught in 2019 and 2020 that explored, respectively the inner personal dimensions and external relational dimensions of professional work to reduce climate risks. Finally, we detail some of the lessons we’ve learned in the processes of convening these courses and look to future opportunities for growth and sustained action as educators ourselves.
more »
« less
- Award ID(s):
- 1751696
- PAR ID:
- 10337276
- Date Published:
- Journal Name:
- Journal of sustainability education
- ISSN:
- 2151-7452
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Students often find biology courses to be very difficult and isolating, particularly if they identify as part of a group that has been historically excluded from STEM. Some of this anxiety and isolation comes from high-stakes exams. We decided to use the collaborative structure of two-stage exams to try to overcome the isolation of assessment. In two-stage exams, students take an individual exam, and then immediately get into groups and take the exam again, discussing the questions and the rationale behind the answers. Their exam scores are a combination of the two attempts. Our move to emergency online learning because of the COVID-19 pandemic forced us to try our two-stage exams online. In this Teaching Tools and Strategies essay, we discuss our process of offering two-stage exams online at two different institutions: a two-year Community College and four-year Research University. We share feedback from the students and discuss our iterative improvements to two-stage exam use.more » « less
-
The Computer Science Frontiers (CSF) project introduces teachers to the topics of artificial intelligence and distributed computing to engage their female students in computing by connecting lessons to relevant cutting edge technologies. Application topics include social media and news articles, as well as climate change, the arts (movies, music, and museum collections), and public health/medicine. CSF educators are prepared in a pedagogy and peer-teaching centered professional development program where they simultaneously learn and teach distributed computing, artificial intelligence, and internet of things lessons to each other. These professional developments allow educators to hone in on their teaching skills of these new topics and gain confidence in their ability to teach new computer science materials before running several activities with their students in the academic year classroom. In this workshop, teachers participating in the CS Frontiers professional development will give testimonials discussing their experiences teaching these topics in a two week summer camp. Attendees will then try out three computing activities, one from each Computer Science Frontiers module. Finally, there will be a question and answer session.more » « less
-
A significant challenge physics faculty face teaching introductory labs is engaging students in authentic science practices. Another has been highlighted given the current global pandemic—how to engage students in our laboratory courses while maintaining appropriate social distancing and hygiene standards. We have chosen to answer these challenges by transforming our labs…twice. We discuss the rationale behind the first transformation to a practice-focused curriculum. In March 2020 we needed to transform our labs again, this time to accommodate online learning. This paper discusses two chief questions: “What are we doing to engage students in science practices?” and “How did we make all of this work online?”more » « less
-
Education plays a critical role in the fight against climate change, offering educators an opportunity to inspire and empower students to take meaningful climate action. This Perspective explores how Action for Climate Empowerment (ACE) can be integrated into chemistry and environmental science education through a combination of art−science projects, community-based learning (CBL), and sustainability outreach. By implementing equitable and empowering pedagogies, such as CBL and creative expression through art, we can inspire empathy and care for planet Earth. This article provides practical examples of using visual exploration tools and sustainability-focused STEM outreach, which includes projects on bioplastics, algae biodiesel, and DNA nanotechnology. These projects help students understand how chemistry can contribute to solutions for climate change and environmental justice. By fostering creativity, empathy, and collaboration, educators can create impactful learning experiences that equip students with the knowledge, skills, and motivation to take climate action. Through authentic scientific research projects centered on sustainability, education becomes a means of empowerment and liberation, inspiring students to advocate for the environment as they imagine and build a sustainable future.more » « less
An official website of the United States government

