Abstract The ecological dynamics of co‐flowering communities are largely mediated by pollinators. However, current understanding of pollinator‐mediated interactions primarily relies on how co‐flowering plants influence attraction of shared pollinators, and much less is known about plant–plant interactions that occur via heterospecific pollen (HP) transfer. Invaded communities in particular can be highly affected by the transfer of alien pollen, but the strength, drivers and fitness consequences of these interactions at a community scale are not well understood.Here we analyse HP transfer networks in nine coastal communities in the Yucatan Mexico that vary in the relative abundance of invasive flowers to evaluate how HP donation and receipt varies between native and alien plants. We further evaluate whether HP donation and receipt are mediated by floral traits (e.g. display, flower size) or pollinator visitation rate. Finally, we evaluated whether post‐pollination success (proportion of pollen tubes produced) was affected by alien HP receipt and whether the effect varied between native and alien recipients.HP transfer networks exhibit relatively high connectance (c. 15%), suggesting high HP transfer within the studied communities. Significant network nestedness further suggests the existence of species that predominantly act as HP donors or recipients in the community. Species‐level analyses showed that natives receive 80% more HP compared to alien species, and that alien plants donate 40% more HP than natives. HP receipt and donation were mediated by different floral traits and such effects were independent of plant origin (native or alien). The proportion of alien HP received significantly affected conspecific pollen tube success in natives, but not that of alien species.Synthesis. Our results suggest that HP transfer in invaded communities is widespread, and that native and alien species play different roles within HP transfer networks, which are mediated by a different suite of floral traits. Alien species, in particular, play a central role as HP donors and are more tolerant to HP receipt than natives—a finding that points to two overlooked mechanisms facilitating alien plant invasion and success within native co‐flowering communities.
more »
« less
Exosymbiotic microbes within fermented pollen provisions are as important for the development of solitary bees as the pollen itself
- Award ID(s):
- 1929499
- PAR ID:
- 10337405
- Date Published:
- Journal Name:
- Ecology and Evolution
- Volume:
- 12
- Issue:
- 4
- ISSN:
- 2045-7758
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Ragweed pollen is a prevalent allergen in late summer and autumn, worsening seasonal allergic rhinitis and asthma symptoms. In the atmosphere, pollen can osmotically rupture to produce sub-pollen particles (SPP). Because of their smaller size, SPP can penetrate deeper into the respiratory tract than intact pollen grains and may trigger severe cases of asthma. Here we characterize airborne SPP forming from rupturing giant ragweed ( Ambrosia trifida ) pollen for the first time, using scanning electron microscopy and single-particle fluorescence spectroscopy. SPP ranged in diameter from 20 nm to 6.5 μm. Most SPP are capable of penetrating into the lower respiratory tract, with 82% of SPP < 1.0 μm, and are potential cloud condensation nuclei, with 50% of SPP < 0.20 μm. To support predictions of the health and environmental effects of SPP, we have developed a quantitative method to estimate the number of SPP generated per pollen grain ( $${n}_{\mathrm{f}}$$ n f ) based upon the principle of mass conservation. We estimate that one giant ragweed pollen grain generates 1400 SPP across the observed size range. The new measurements and method presented herein support more accurate predictions of SPP occurrence, concentration, and air quality impacts that can help to reduce the health burden of allergic airway diseases. Graphic abstract Rupturing ragweed pollen releasing cellular components (right), viewed by an inverted light microscope.more » « less
-
Abstract Pollen, the microgametophyte of seed plants, has an important role in plant reproduction and, therefore, evolution. Pollen is variable in, for example, size, shape, aperture number; these features are particularly diverse in some plant taxa and can be diagnostic. In one family, Boraginaceae, the range of pollen diversity suggests the potential utility of this family as a model for integrative studies of pollen development, evolution and molecular biology. In the present study, a comprehensive survey of the diversity and evolution of pollen from 538 species belonging to 72 genera was made using data from the literature and additional scanning electron microscopy examination. Shifts in diversification rates and the evolution of various quantitative characters were detected, and the results revealed remarkable differences in size, shape and number of apertures. The pollen of one subfamily, Boraginoideae, is larger than that in Cynoglossoideae. The diversity of pollen shapes and aperture numbers in one tribe, Lithospermeae, is greater than that in the other tribes. Ancestral pollen for the family was resolved as small, prolate grains that bear three apertures and are iso‐aperturate. Of all the tribes, the greatest number of changes in pollen size and aperture number were observed in Lithospermeae and Boragineae, and the number of apertures was found to be stable throughout all tribes of Cynoglossoideae. In addition, the present study showed that diversification of Boraginaceae cannot be assigned to a single factor, such as pollen size, and the increased rate of diversification for species‐rich groups (e.g.Cynoglossum) is not correlated with pollen size or shape evolution. The palynological data and patterns of character evolution presented in the study provide better resolution of the roles of geographical and ecological factors in the diversity and evolution of pollen grains of Boraginaceae, and provide suggestions for future palynological research across the family.more » « less
An official website of the United States government

