skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Barriers Impeding Active Mixing of Swimming Microbes in a Hyperbolic Flow
We present experiments on the motion of swimming microbes in a laminar, hyperbolic flow. We test a theory that predicts the existence of swimming invariant manifolds (SwIMs) that act as invisible, one-way barriers that block the motion of the microbes. The flow is generated in a cross-channel in a PDMS cell, driven by syringe pumps. The swimming microbes are euglena and tetraselmis, both single-celled, eukaryotic algae. The algae are not ideal smooth-swimmers: there is significant rocking in their motion with occasional tumbles and a swimming speed that can vary. The experiments show that the swimming algae are bound very effectively by the predicted SwIMs. The different shapes and swimming behavior of the euglena and tetraselmis affect the distribution of swimming angles, with the elongated euglena having a larger probability of swimming in a direction parallel to the outflow directions. The differences in swimming orientation affect the ability of the microbes to penetrate the manifolds that act as barriers to passive tracers. The differing shapes of the euglena and tetraselmis also affect probabilities for the microbes to escape in one direction or the other along the outflow.  more » « less
Award ID(s):
1806355 1825379
PAR ID:
10337599
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Physics
Volume:
10
ISSN:
2296-424X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Microorganisms often move through viscoelastic environments, as biological fluids frequently have a rich microstructure owing to the presence of large polymeric molecules. Research on the effect of fluid elasticity on the swimming kinematics of these organisms has usually been focused on those that move via cilia or flagellum. Experimentally, Shen (X. N. Shen et al. , Phys. Rev. Lett. , 2011, 106 , 208101) reported that the nematode C. elegans , a model organism used to study undulatory motion, swims more slowly as the Deborah number describing the fluid's elasticity is increased. This phenomenon has not been thoroughly studied via a fully resolved three-dimensional simulation; moreover, the effect of fluid elasticity on the swimming speed of organisms moving via euglenoid movement, such as E. gracilis , is completely unknown. In this study, we discuss the simulation of the arbitrary motion of an undulating or pulsating swimmer that occupies finite volume in three dimensions, with the ability to specify any differential viscoelastic rheological model for the surrounding fluid. To accomplish this task, we use a modified version of the Immersed Finite Element Method presented in a previous paper by Guido and Saadat in 2018 (A. Saadat et al. , Phys. Rev. E , 2018, 98 , 063316). In particular, this version allows for the simulation of deformable swimmers such that they evolve through an arbitrary set of specified shapes via a conformation-driven force. From our analysis, we observe several key trends not found in previous two-dimensional simulations or theoretical analyses for C. elegans , as well as novel results for the amoeboid motion. In particular, we find that regions of high polymer stress concentrated at the head and tail of the swimming C. elegans are created by strong extensional flow fields and are associated with a decrease in swimming speed for a given swimming stroke. In contrast, in two dimensions these regions of stress are commonly found distributed along the entire body, likely owing to the lack of a third dimension for polymer relaxation. A comparison of swim speeds shows that the calculations in two-dimensional simulations result in an over-prediction of the speed reduction. We believe that our simulation tool accurately captures the swimming motion of the two aforementioned model swimmers and furthermore, allows for the simulation of multiple deformable swimmers, as well as more complex swimming geometries. This methodology opens many new possibilities for future studies of swimmers in viscoelastic fluids. 
    more » « less
  2. We present experiments on chaotic motion of self-propelled (active) particles in a time-independent, two-dimensional vortex chain flow. We track Tetraselmis microbes and calculate the variance of a spreading distribution of these microbes in the flow. For small non-dimensional swimming speed v0, we find subdiffusion with variance ⟨x2⟩∼tγ with γ<1; transport is diffusive (γ=1) for larger v0. Subdiffusion for small v0 is due to dynamic trapping of microbes to islands of ordered trajectories surrounded by a sea of chaotic motion; these islands disappear for larger v0. We calculate Lagrangian-averaged trajectories (LATs) from the experimental data and use the LATs to measure trapping time probability distributions P(t). We find regimes with P(t)∼t−ν with ν<2 for small v0, consistent with the measured subdiffusion. 
    more » « less
  3. One of the common hydrotherapeutic exercises is walking in water because buoyancy reduces joint loading and increases mobility for a patient. The fluid drag forces (the forces that act on the person from the fluid in the direction opposing the direction of motion) cause changes in muscle activations, as walking in water changes the forces that act on the leg compared with overground walking. Here, through a series of numerical simulations, we quantify how the flow forces that act on the leg due to its motion in water change over a walking gait cycle. We show that besides drag forces that act on the walking legs and peak when the leg is accelerated forward, relatively large lateral forces (in the direction perpendicular to the direction of motion) also act on the leg. These forces are caused by the rapid acceleration of the opposite leg when the two legs are close, creating an asymmetric pressure distribution around the leg. These results are unexpected and could have significant implications for designing hydrotherapeutic plans for patients by considering the lateral forces besides the drag forces that act on the body while walking in water. 
    more » « less
  4. Abstract The marine oligotrich ciliate Strombidium capitatum is a cruise-feeder, relying on ciliary motion and propulsion flow to individually detect and capture particles. High-speed, high-magnification digital imaging revealed that the cell swims forward by sweeping its anterior adoral membranelles (AAMs) backward, achieving a mean path-averaged speed of U = 1.7 mm s−1 (31 cell-lengths per second). Particle detection occurs through either hydrodynamic signal perception or ciliary contact perception, with a mean reaction distance of R = 20.4 μm. While executing a ciliary reversal of AAMs to handle and capture a perceived particle, the cell coordinates the ciliary motion of ventral adoral membranelles (VAMs, the “lapel”) with the ciliary reversal of AAMs (the “collar”), causing a sudden halt of cell motion, thereby functioning as a motion “brake” that is crucial for effective particle capture. The encounter rate with small prey particles is calculated using πR2U (~8.0 μL h−1, equivalent to ~ 3.5 × 106 cell volumes per day). Based on hydrodynamic modeling results, it is hypothesized that spatial structures of the flow velocity vector and acceleration fields in front of the swimming cell are essential for pushing an embedded particle forward, creating a strong enough slip velocity and hydrodynamic signal for prey perception, even for a neutrally buoyant small particle. 
    more » « less
  5. Yeast, molds and other fungi are found in most environments across the world. Many of the fungi that live on land today form relationships called symbioses with other microbes. Some of these relationships, like those formed with green algae, are beneficial and involve the exchange carbon, nitrogen and other important nutrients. Algae first evolved in the sea and it has been suggested that symbioses with fungi may have helped some algae to leave the water and to colonize the land more than 500 million years ago. A fungus called Mortierella elongata grows as a network of filaments in soils and produces large quantities of oils that have various industrial uses. While the details of Mortierella’s life in the wild are still not certain, the fungus is thought to survive by gaining nutrients from decaying matter and it is not known to form any symbioses with algae. In 2018, however, a team of researchers reported that, when M. elongata was grown in the laboratory with a marine alga known as Nannochloropsis oceanica, the two organisms appeared to form a symbiosis. Both the alga and fungus produce oil, and when grown together the two organisms produced more oil than when the fungus or algal cells were grown alone. However, it was not clear whether the fungus and alga actually benefit from the symbiosis, for example by exchanging nutrients and helping each other to resist stress. Du et al. – including many of the researchers involved in the earlier work – have now used biochemical techniques to study this relationship in more detail. The experiments found that there was a net flow of carbon from algal cells to the fungus, and a net flow of nitrogen in the opposite direction. When nutrients were scarce, algae and fungi grown in the same containers grew better than algae and fungi grown separately. Further, Mortierella only obtained carbon from living algae that attached to the fungal filaments and not from dead algae. Unexpectedly, further experiments found that when grown together over a period of several weeks or more some of the algal cells entered and lived within the filaments of the fungus. Previously, no algae had ever been seen to inhabit the living filaments of a fungus. These findings may help researchers to develop improved methods to produce oil from M. elongata and N. oceanica. Furthermore, this partnership provides a convenient new system to study how one organism can live within another and to understand how symbioses between algae and fungi may have first evolved. 
    more » « less