skip to main content


Title: β-Trioxopyrrocorphins: pyrrocorphins of graded aromaticity
Octaethyltrioxopyrrocorphins unexpectedly show macrocycle-aromatic properties, even though they contain the macrocyclic π-system of the non-aromatic pyrrocorphins (hexahydroporphyrins). Two of the four possible triketone regioisomers were first reported in 1969 by one-pot oxidation of octaethylporphyrin but remained essentially unexplored since. We detail here the targeted preparation of the remaining two triketone isomers and the optical and NMR spectroscopic properties of all isomers. All four regioisomers possess unique electronic properties, including broadly varying degrees of diatropicity that were experimentally determined using 1 H NMR spectroscopy and computationally verified. Structural patterns modulating the aromaticity were recognized. These differences highlight the regioisomerically differentiated influences of the three β-oxo-functionalities. We also present the solid state structure of the two most common isomers (in their free base form or as zinc complexes), allowing further conclusions to be made about the resonance structures present in these triketones. Remarkably, also, the halochromic properties of the triketones differ sharply from those of regular (hydro)porphyrins, providing further support for the proposed 16-membered, 18 π-electron aromatic ring-current. The work conceptually expands the understanding of tris-modified hydroporphyrinoid analogues and the factors that enable and control porphyrinoid aromaticity.  more » « less
Award ID(s):
1800361
NSF-PAR ID:
10337698
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
12
Issue:
37
ISSN:
2041-6520
Page Range / eLocation ID:
12292 to 12301
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Fusion of aromatic subunits to stabilize an antiaromatic core allows the isolation and study of otherwise unstable paratropic systems. A complete study of a series of six naphthothiophene‐fuseds‐indacene isomers is herein described. Additionally, the structural modifications resulted in increased π–π overlap in the solid state, which was further explored through changing the sterically blocking mesityl group to (triisopropylsilyl)ethynyl in three derivatives. The computed antiaromaticity of the six isomers is compared to the observed physical properties, such as NMR chemical shift, UV‐vis, and CV data. We find that the calculations predict the most antiaromatic isomer and give a general estimation of the relative degree of paratropicity for the remaining isomers, when compared to the experimental results.

     
    more » « less
  2. The halogen–π (X–π) interaction is an intermolecular interaction between the electron-poor region of bonded halogen atoms and aromatic rings. We report an experimental evaluation of the halogen–π (X–π) interaction using liquid chromatography with carbon-material coated columns providing strong π interactions in the normal phase mode. A C 70 -fullerene (C70)-coated column showed higher retentions for halogenated benzenes as the number of halogen substitutions increased as a result of X–π interactions. In addition, the strength of the X–π interaction increased in the order of F < Cl < Br < I. Changes to the UV absorption of C70 and the brominated benzenes suggested that the intermolecular interaction changed from the π–π interaction to X–π interaction as the number of bromo substitutions increased. Computer simulations also showed that the difference in dipole moments among structural isomers affected the strength of the π–π interaction. Furthermore, we concluded from small peak shifts in 1 H NMR and from computer simulations that the orbital interaction contributes to the X–π interactions. Finally, we succeeded in the one-pot separation of all isomers of brominated benzenes using the C70-coated column by optimizing the mobile phase conditions. 
    more » « less
  3. Since the discovery of the B 40 borospherene, research interests have been directed to the structural evolution of even larger boron clusters. An interesting question concerns if the borospherene cages persist in larger boron clusters like the fullerenes. Here we report a photoelectron spectroscopy (PES) and computational study on the structures and bonding of B 41 − and B 42 − , the largest boron clusters characterized experimentally thus far. The PE spectra of both clusters display broad and complicated features, suggesting the existence of multiple low-lying isomers. Global minimum searches for B 41 − reveal three low-lying isomers ( I–III ), which are all related to the planar B 40 − structure. Isomer II ( C s , 1 A′) possessing a double hexagonal vacancy is found to agree well with the experiment, while isomers I ( C s , 3 A′′) and III ( C s , 1 A′) both with a single hexagonal vacancy are also present as minor isomers in the experiment. The potential landscape of B 42 − is found to be much more complicated with numerous low-lying isomers ( VII–XII ). The quasi-planar structure VIII ( C 1 , 2 A) containing a double hexagonal vacancy is found to make major contributions to the observed PE spectrum of B 42 − , while the other low-lying isomers may also be present to give rise to a complicated spectral pattern. Chemical bonding analyses show isomer II of B 41 − ( C s , 1 A′) and isomer VIII of B 42 − ( C 1 , 2 A) are π aromatic, analogous to that in the polycyclic aromatic hydrocarbon C 27 H 13 + ( C 2v , 1 A 1 ). Borospherene cage isomers are also found for both B 41 − and B 42 − in the global minimum searches, but they are much higher energy isomers. 
    more » « less
  4. Abstract

    Designing and synthesizing a stable compound with a planar tetracoordinate silicon (ptSi) center is a challenging goal for chemists. Here, a series of potential aromatic ptSi compounds composed of four conjugated rings shared by a centrally embedded Si atom are theoretically designed and computationally verified. Both Born–Oppenheimer molecular dynamics (BOMD) simulations and potential energy surface scannings verify the high stability and likely existence of these compounds, particularly Si‐16‐5555 (SiN4C8H8) with 16 π electrons, under standard ambient temperature and pressure. Notably, the Hückel aromaticity rule, which works well for single rings, is inconsistent with the high stability of Si‐16‐5555 where the 16 p electrons are spread over four five‐membered rings fused together. Bonding analyses show that the strong electron donation from the peripheral 12‐membered conjugated ring with 16 π electrons to the vacant central atomic orbital Si 3pzleads to the stabilization for both the ptSi coordination and planar aromaticity. The partial occupation of Si 3pzresults in the peculiar carbenoid‐type behaviors for the amphoteric center. By modulating the electron density on the ring with substituent groups, we can regulate the nucleophilic and electrophilic properties of the central Si.

     
    more » « less
  5. null (Ed.)
    The aromaticity and dynamics of a set of recently proposed neutral 5- and 6-membered heterocycles that are closed by dative (donor–acceptor) or multi-center σ bonds, and have resonance forms with a Hückel number of π-electrons, are examined. The donors and acceptors in the rings include N, O, and F, and B, Be, and Mg, respectively. The planar geometry of the rings, coupled with evidence from different measures of aromaticity, namely the NICS zz , and NICS πzz components of the conventional nucleus independent chemical shifts (NICS), and ring current strengths (RCS), indicate non-trivial degrees of aromaticity in certain cases, including the cyclic C 3 B 2 OH 6 and C 3 BOH 5 isomers, both with three bonds to the O site in the ring. The former is lower in energy by at least 17.6 kcal mol −1 relative to linear alternatives obtained from molecular dynamics simulations in this work. Some of the other systems examined are best described as non-aromatic. Ring opening, closing, and isomerization are observed in molecular dynamics simulations for some of the systems studied. In a few cases, the ring indeed persists. 
    more » « less