skip to main content

This content will become publicly available on February 4, 2023

Title: Vivarium: an interface and engine for integrative multiscale modeling in computational biology
Abstract Motivation This article introduces Vivarium—software born of the idea that it should be as easy as possible for computational biologists to define any imaginable mechanistic model, combine it with existing models and execute them together as an integrated multiscale model. Integrative multiscale modeling confronts the complexity of biology by combining heterogeneous datasets and diverse modeling strategies into unified representations. These integrated models are then run to simulate how the hypothesized mechanisms operate as a whole. But building such models has been a labor-intensive process that requires many contributors, and they are still primarily developed on a case-by-case basis with each project starting anew. New software tools that streamline the integrative modeling effort and facilitate collaboration are therefore essential for future computational biologists. Results Vivarium is a software tool for building integrative multiscale models. It provides an interface that makes individual models into modules that can be wired together in large composite models, parallelized across multiple CPUs and run with Vivarium’s discrete-event simulation engine. Vivarium’s utility is demonstrated by building composite models that combine several modeling frameworks: agent-based models, ordinary differential equations, stochastic reaction systems, constraint-based models, solid-body physics and spatial diffusion. This demonstrates just the beginning of what is more » possible—Vivarium will be able to support future efforts that integrate many more types of models and at many more biological scales. Availability and implementation The specific models, simulation pipelines and notebooks developed for this article are all available at the vivarium-notebooks repository: https://github.com/vivarium-collective/vivarium-notebooks. Vivarium-core is available at https://github.com/vivarium-collective/vivarium-core, and has been released on Python Package Index. The Vivarium Collective (https://vivarium-collective.github.io) is a repository of freely available Vivarium processes and composites, including the processes used in Section 3. Supplementary Materials provide with an extensive methodology section, with several code listings that demonstrate the basic interfaces. Supplementary information Supplementary data are available at Bioinformatics online. « less
Authors:
; ; ; ; ; ;
Editors:
Valencia, Alfonso
Award ID(s):
1903477
Publication Date:
NSF-PAR ID:
10337881
Journal Name:
Bioinformatics
Volume:
38
Issue:
7
Page Range or eLocation-ID:
1972 to 1979
ISSN:
1367-4803
Sponsoring Org:
National Science Foundation
More Like this
  1. PmagPy Online: Jupyter Notebooks, the PmagPy Software Package and the Magnetics Information Consortium (MagIC) Database Lisa Tauxe$^1$, Rupert Minnett$^2$, Nick Jarboe$^1$, Catherine Constable$^1$, Anthony Koppers$^2$, Lori Jonestrask$^1$, Nick Swanson-Hysell$^3$ $^1$Scripps Institution of Oceanography, United States of America; $^2$ Oregon State University; $^3$ University of California, Berkely; ltauxe@ucsd.edu The Magnetics Information Consortium (MagIC), hosted at http://earthref.org/MagIC is a database that serves as a Findable, Accessible, Interoperable, Reusable (FAIR) archive for paleomagnetic and rock magnetic data. It has a flexible, comprehensive data model that can accomodate most kinds of paleomagnetic data. The PmagPy software package is a cross-platform and open-source set ofmore »tools written in Python for the analysis of paleomagnetic data that serves as one interface to MagIC, accommodating various levels of user expertise. It is available through github.com/PmagPy. Because PmagPy requires installation of Python, several non-standard Python modules, and the PmagPy software package, there is a speed bump for many practitioners on beginning to use the software. In order to make the software and MagIC more accessible to the broad spectrum of scientists interested in paleo and rock magnetism, we have prepared a set of Jupyter notebooks, hosted on jupyterhub.earthref.org which serve a set of purposes. 1) There is a complete course in Python for Earth Scientists, 2) a set of notebooks that introduce PmagPy (pulling the software package from the github repository) and illustrate how it can be used to create data products and figures for typical papers, and 3) show how to prepare data from the laboratory to upload into the MagIC database. The latter will satisfy expectations from NSF for data archiving and for example the AGU publication data archiving requirements. Getting started To use the PmagPy notebooks online, go to website at https://jupyterhub.earthref.org/. Create an Earthref account using your ORCID and log on. [This allows you to keep files in a private work space.] Open the PmagPy Online - Setup notebook and execute the two cells. Then click on File = > Open and click on the PmagPy_Online folder. Open the PmagPy_online notebook and work through the examples. There are other notebooks that are useful for the working paleomagnetist. Alternatively, you can install Python and the PmagPy software package on your computer (see https://earthref.org/PmagPy/cookbook for instructions). Follow the instructions for "Full PmagPy install and update" through section 1.4 (Quickstart with PmagPy notebooks). This notebook is in the collection of PmagPy notebooks. Overview of MagIC The Magnetics Information Consortium (MagIC), hosted at http://earthref.org/MagIC is a database that serves as a Findable, Accessible, Interoperable, Reusable (FAIR) archive for paleomagnetic and rock magnetic data. Its datamodel is fully described here: https://www2.earthref.org/MagIC/data-models/3.0. Each contribution is associated with a publication via the DOI. There are nine data tables: contribution: metadata of the associated publication. locations: metadata for locations, which are groups of sites (e.g., stratigraphic section, region, etc.) sites: metadata and derived data at the site level (units with a common expectation) samples: metadata and derived data at the sample level. specimens: metadata and derived data at the specimen level. criteria: criteria by which data are deemed acceptable ages: ages and metadata for sites/samples/specimens images: associated images and plots. Overview of PmagPy The functionality of PmagPy is demonstrated within notebooks in the PmagPy repository: PmagPy_online.ipynb: serves as an introdution to PmagPy and MagIC (this conference). It highlights the link between PmagPy and the Findable Accessible Interoperable Reusabe (FAIR) database maintained by the Magnetics Information Consortium (MagIC) at https://earthref.org/MagIC. Other notebooks of interest are: PmagPy_calculations.ipynb: demonstrates many of the PmagPy calculation functions such as those that rotate directions, return statistical parameters, and simulate data from specified distributions. PmagPy_plots_analysis.ipynb: demonstrates PmagPy functions that can be used to visual data as well as those that conduct statistical tests that have associated visualizations. PmagPy_MagIC.ipynb: demonstrates how PmagPy can be used to read and write data to and from the MagIC database format including conversion from many individual lab measurement file formats. Please see also our YouTube channel with more presentations from the 2020 MagIC workshop here: https://www.youtube.com/playlist?list=PLirL2unikKCgUkHQ3m8nT29tMCJNBj4kj« less
  2. Martelli, Pier Luigi (Ed.)
    Abstract Motivation Reconstruction of genome-scale networks from gene expression data is an actively studied problem. A wide range of methods that differ between the types of interactions they uncover with varying trade-offs between sensitivity and specificity have been proposed. To leverage benefits of multiple such methods, ensemble network methods that combine predictions from resulting networks have been developed, promising results better than or as good as the individual networks. Perhaps owing to the difficulty in obtaining accurate training examples, these ensemble methods hitherto are unsupervised. Results In this article, we introduce EnGRaiN, the first supervised ensemble learning method to constructmore »gene networks. The supervision for training is provided by small training datasets of true edge connections (positives) and edges known to be absent (negatives) among gene pairs. We demonstrate the effectiveness of EnGRaiN using simulated datasets as well as a curated collection of Arabidopsis thaliana datasets we created from microarray datasets available from public repositories. EnGRaiN shows better results not only in terms of receiver operating characteristic and PR characteristics for both real and simulated datasets compared with unsupervised methods for ensemble network construction, but also generates networks that can be mined for elucidating complex biological interactions. Availability and implementation EnGRaiN software and the datasets used in the study are publicly available at the github repository: https://github.com/AluruLab/EnGRaiN. Supplementary information Supplementary data are available at Bioinformatics online.« less
  3. Proteins and nucleic acids participate in essentially every biochemical process in living organisms, and the elucidation of their structure and motions is essential for our understanding how these molecular machines perform their function. Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful versatile technique that provides critical information on the molecular structure and dynamics. Spin-relaxation data are used to determine the overall rotational diffusion and local motions of biological macromolecules, while residual dipolar couplings (RDCs) reveal local and long-range structural architecture of these molecules and their complexes. This information allows researchers to refine structures of proteins and nucleic acids and providesmore »restraints for molecular docking. Several software packages have been developed by NMR researchers in order to tackle the complicated experimental data analysis and structure modeling. However, many of them are offline packages or command-line applications that require users to set up the run time environment and also to possess certain programming skills, which inevitably limits accessibility of this software to a broad scientific community. Here we present new science gateways designed for NMR/structural biology community that address these current limitations in NMR data analysis. Using the GenApp technology for scientific gateways (https://genapp.rocks), we successfully transformed ROTDIF and ALTENS, two offline packages for bio-NMR data analysis, into science gateways that provide advanced computational functionalities, cloud-based data management, and interactive 2D and 3D plotting and visualizations. Furthermore, these gateways are integrated with molecular structure visualization tools (Jmol) and with gateways/engines (SASSIE-web) capable of generating huge computer-simulated structural ensembles of proteins and nucleic acids. This enables researchers to seamlessly incorporate conformational ensembles into the analysis in order to adequately take into account structural heterogeneity and dynamic nature of biological macromolecules. ROTDIF-web offers a versatile set of integrated modules/tools for determining and predicting molecular rotational diffusion tensors and model-free characterization of bond dynamics in biomacromolecules and for docking of molecular complexes driven by the information extracted from NMR relaxation data. ALTENS allows characterization of the molecular alignment under anisotropic conditions, which enables researchers to obtain accurate local and long-range bond-vector restraints for refining 3-D structures of macromolecules and their complexes. We will describe our experience bringing our programs into GenApp and illustrate the use of these gateways for specific examples of protein systems of high biological significance. We expect these gateways to be useful to structural biologists and biophysicists as well as NMR community and to stimulate other researchers to share their scientific software in a similar way.« less
  4. In our earlier work (https://github.com/rpsuark/ASEE21-OpenFOAM-Introduction), it was reasoned that open-source software OpenFOAM would be a cost-effective and more accessible alternative for teaching Computational Fluid Dynamics (CFD) than commercial software. Commercial software like Ansys Fluent costs more than $10k per year for one user. The above-mentioned work models wind flow around a building for smooth flow, whereas extreme winds, which tend to be irregular, can cause various structural failures of buildings. These kinds of irregular wind flows are called turbulent flows. Thus, in this contribution, an additional three-week class module is provided for the ‘CFD for Wind Engineering’ class which includesmore »hands-on material on modeling turbulent wind flow around a building using open-source software OpenFOAM and ParaView. To model the turbulence, Large Eddy Simulation (LES) is considered with a logarithmic inlet profile. To connect the log profile in a coarse grid, the law of the wall condition is also introduced in the OpenFOAM environment. To illustrate the application, the wind flow around a cubic building is considered. The current study’s case files and the extended report are provided at https://github.com/rpsuark/ASEE21-OpenFOAM-LES.« less
  5. To train future engineers and to equip them with necessary tools and skills for real-world problem solving, it is important to provide exposure to real-world problem solving by incorporating a software lab module while teaching engineering courses such as Computational Fluid Dynamics (CFD) and/or related Fluids courses. High cost of commercial software packages and limited number of licenses available for course instruction creates several challenges in incorporating commercial software packages in the instructional workflow. To circumvent such limitations, open-source software packages could be a good alternative as open-source software packages can be downloaded and used free of cost and thusmore »provides a wider accessibility to students and practitioners. With the same motivation, in this contribution, an outline for implementing a two-week course module by incorporating open-source software in the instructional workflow is proposed and demonstrated by considering an example of wind flow around a building. The course module outlined in this work can also be extended to formulate a full-fledged CFD course for instructional purposes. Besides the information provided in this paper, authors have also shared an extended report based on current work and the relevant case files via Github repository (https://github.com/rpsuark/ASEE21-OpenFOAM-Introduction) for a hands on learning experience. With the help of information contained in this paper along with the extended report and uploaded case files, readers can install the open-source software packages - ‘OpenFOAM’ and ‘ParaView’, make their own simple case files, run simulations, and visualize the simulated results.« less