skip to main content


Title: Activator-free single-component Co( i )-catalysts for regio- and enantioselective heterodimerization and hydroacylation reactions of 1,3-dienes. New reduction procedures for synthesis of [L]Co( i )-complexes and comparison to in situ generated catalysts
Although cobalt( i ) bis-phosphine complexes have been implicated in many selective C–C bond-forming reactions, until recently relatively few of these compounds have been fully characterized or have been shown to be intermediates in catalytic reactions. In this paper we present a new practical method for the synthesis and isolation of several cobalt( i )-bis-phosphine complexes and their use in Co( i )-catalyzed reactions. We find that easily prepared ( in situ generated or isolated) bis-phosphine and (2,6- N -aryliminoethyl)pyridine (PDI) cobalt( ii ) halide complexes are readily reduced by 1,4-bis-trimethylsilyl-1,4-dihydropyrazine or commercially available lithium nitride (Li 3 N), leaving behind only innocuous volatile byproducts. Depending on the structures of the bis-phosphines, the cobalt( i ) complex crystallizes as a phosphine-bridged species [(P∼P)(X)Co I [μ-(P∼P)]Co I (X)(P∼P)] or a halide-bridged species [(P∼P)Co I [μ-(X)] 2 Co I (P∼P)]. Because the side-products are innocuous, these methods can be used for the in situ generation of catalytically competent Co( i ) complexes for a variety of low-valent cobalt-catalyzed reactions of even sensitive substrates. These complexes are also useful for the synthesis of rare cationic [(P∼P)Co I -η 4 -diene] + X − or [(P∼P)Co I -η 6 -arene] + X − complexes, which are shown to be excellent single-component catalysts for the following regioselective reactions of dienes: heterodimerizations with ethylene or methyl acrylate, hydroacylation and hydroboration. The reactivity of the single-component catalysts with the in situ generated species are also documented.  more » « less
Award ID(s):
1900141
NSF-PAR ID:
10337912
Author(s) / Creator(s):
; ;
Editor(s):
Warren Piers
Date Published:
Journal Name:
Dalton Transactions
ISSN:
1477-9226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Discovery of base metal-catalyzed methods for the preparation of chiral intermediates has garnered great attention. Recently, through a systematic study of activators and ligands, we have discovered Co(I)-catalyzed enantioselective heterodimerization of linear 1,3-dienes with ethylene and acrylates. In these studies, cationic cobalt(I) has been invoked as an active catalyst to carry out the transformation. However, the synthesis and isolation of such active Co(I)-complexes which could give insight into of reaction’s mechanism, remains challenging. Herein, we disclosed a reliable procedure for the synthesis and isolation of Co(I)-complexes and characterized them by UV-Vis spectroscopy and X-ray crystallography. The bis-phosphine ligated Co(I) complexes in presence of activators, performed the regio- and enantioselective hydroboration of 2- substituted 1,3-diene with pinacolborane (HBPin) to obtain homoallylic boronates (enantiomeric excess, ee >90%). In the absence of activators, these complexes do not catalyze the reaction suggesting the key role of cationic Co(I)-species in the catalytic cycle. Currently, these Co(I) complexes are being further utilized in the hydroacylation of 1,3-dienes with simple aliphatic aldehyde to produce enantiopure ketones. The comprehensive protocols for the synthesis of Co(I) complexes and its application in hydrovinylation, heterodimerization with acrylates, hydroboration, and hydroacylation of 1,3-dienes will be discussed. 
    more » « less
  2. ABSTRACT: Enantiopure homoallylic boronate esters are versatile intermediates because the C–B bond in these com-pounds can be stereospecifically transformed into C–C, C–O and C–N bonds. Regio- and enantioselective synthesis of these precursors from 1,3-dienes has few precedents in the literature. We have identified reaction conditions and ligands for the synthesis of nearly enantiopure (er >97:3 to >99:1) homoallylic boronate esters via a rarely seen cobalt-catalyzed [4,3]-hydroboration of 1,3-dienes. Monosubstituted or 2,4-disubstituted linear dienes undergo highly efficient, regio- and enanti-oselective hydroboration with HBPin catalyzed by [(L*)Co]+[BARF]–, where L* is typically a chiral bis-phosphine ligand with a narrow bite angle. Several such ligands (examples: i-PrDuPhos, QuinoxP*, Duanphos and, BenzP*) that give high enantioselectivities for the [4,3]-hydroboration product have been identified. In addition, the equally challenging problem of regioselectivity is uniquely solved with a dibenzooxaphosphole ligand, (R,R)-MeO-BIBOP. A cationic cobalt(I) complex of this ligand is a very efficient (TON >960) catalyst, while providing excellent regioselectivities (rr >98:2) and enantioselectiv-ities (er >98:2) for a broad range of substrates. A detailed computational investigation of the reactions using Co-complexes from two widely different ligands (BenzP* and MeO-BIBOP) employing B3LYP-D3 density functional theory provides key insights into the mechanism and the origins of selectivities. The computational results are in full agreement with the exper-iments. For the complexes we have examined thus far, the relative stabilities of the diastereomeric diene-bound complexes [(L*)Co(4-diene)]+ leads to the initial diastereofacial selectivity, which in turn is retained in the subsequent steps, providing exceptional enantioselectivity for the reactions. 
    more » « less
  3. The cobalt-catalyzed asymmetric hydrogenation of dehydro-sitagliptin was studied and applied to the synthesis of sitagliptin (Januvia®). Catalyst discovery efforts were accelerated by the application of a general method for the synthesis of cationic bis(phosphine) cobalt η6-arene complexes. One-electron oxidation of bis(phosphine) cobalt(II) dialkyl complexes in the presence of arenes furnished the corre-sponding, bench stable cobalt precatalysts, [(P-P)Co(η6-C6H6)][BArF4]. Asymmetric hydrogenation utilized 0.5 mol% of the optimal catalyst, [(R,R)-(iPrDuPhos)Co(η6-C6H6)][BArF4] in THF solution and produced sitagliptin in >99% yield with 97% ee. Cobalt catalysts were compatible with a range of solvents and maintained excellent activity and selectivity after standing in air in the solid state for two weeks. Deuterium labeling studies support an enamine-imine tautomerization process resulting in reduction of the metalated imine. Notably, state-of-the-art neutral bis(phosphine) cobalt precatalysts were ineffective, emphasizing the utility of a class of cationic cobalt precatalyst. 
    more » « less
  4. Abstract

    Chloride abstraction from [(R,R)‐(iPrDuPhos)Co(μ‐Cl)]2with NaBArF4(BArF4=B[(3,5‐(CF3)2)C6H3]4) in the presence of dienes, such as 1,5‐cyclooctadiene (COD) or norbornadiene (NBD), yielded long sought‐after cationic bis(phosphine) cobalt complexes, [(R,R)‐(iPrDuPhos)Co(η22‐diene)][BArF4]. The COD complex proved substitutionally labile undergoing diene substitution with tetrahydrofuran, NBD, or arenes. The resulting 18‐electron, cationic cobalt(I) arene complexes, as well as the [(R,R)‐(iPrDuPhos)Co(diene)][BArF4] derivatives, proved to be highly active and enantioselective precatalysts for asymmetric alkene hydrogenation. A cobalt–substrate complex, [(R,R)‐(iPrDuPhos)Co(MAA)][BArF4] (MAA=methyl 2‐acetamidoacrylate) was crystallographically characterized as the opposite diastereomer to that expected for productive hydrogenation demonstrating a Curtin–Hammett kinetic regime similar to rhodium catalysis.

     
    more » « less
  5. Abstract

    Chloride abstraction from [(R,R)‐(iPrDuPhos)Co(μ‐Cl)]2with NaBArF4(BArF4=B[(3,5‐(CF3)2)C6H3]4) in the presence of dienes, such as 1,5‐cyclooctadiene (COD) or norbornadiene (NBD), yielded long sought‐after cationic bis(phosphine) cobalt complexes, [(R,R)‐(iPrDuPhos)Co(η22‐diene)][BArF4]. The COD complex proved substitutionally labile undergoing diene substitution with tetrahydrofuran, NBD, or arenes. The resulting 18‐electron, cationic cobalt(I) arene complexes, as well as the [(R,R)‐(iPrDuPhos)Co(diene)][BArF4] derivatives, proved to be highly active and enantioselective precatalysts for asymmetric alkene hydrogenation. A cobalt–substrate complex, [(R,R)‐(iPrDuPhos)Co(MAA)][BArF4] (MAA=methyl 2‐acetamidoacrylate) was crystallographically characterized as the opposite diastereomer to that expected for productive hydrogenation demonstrating a Curtin–Hammett kinetic regime similar to rhodium catalysis.

     
    more » « less