skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Finite dimensional models for extremes of Gaussian and non-Gaussian processes
Numerical solutions of stochastic problems involving random processes 𝑋(𝑡), which constitutes infinite families of random variables, require to represent these processes by finite dimensional (FD) models 𝑋𝑑 (𝑡), i.e., deterministic functions of time depending on finite numbers 𝑑 of random variables. Most available FD models match the mean, correlation, and other global properties of 𝑋(𝑡). They provide useful information to a broad range of problems, but cannot be used to estimate extremes or other sample properties of 𝑋(𝑡). We develop FD models 𝑋𝑑 (𝑡) for processes 𝑋(𝑡) with continuous samples and establish conditions under which these models converge weakly to 𝑋(𝑡) in the space of continuous functions as 𝑑 → ∞. These theoretical results are illustrated by numerical examples which show that, under the conditions established in this study, samples and extremes of 𝑋(𝑡) can be approximated by samples and extremes of 𝑋𝑑 (𝑡) and that the discrepancy between samples and extremes of these processes decreases with 𝑑.  more » « less
Award ID(s):
2013697
PAR ID:
10337997
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Probabilistic engineering mechanics
Volume:
68 (2022) 103199
Issue:
68 (2022) 103199
ISSN:
0266-8920
Page Range / eLocation ID:
68 (2022) 103199
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Conditions under which samples of continuous stochastic processes 𝑋(𝑡) on bounded time intervals [0, 𝜏] can be represented by samples of finite dimensional (FD) processes 𝑋𝑑 (𝑡) are augmented such that samples of Slepian models 𝑆𝑑,𝑎(𝑡) of 𝑋𝑑 (𝑡) can be used as surrogates for samples of Slepian models 𝑆𝑎(𝑡) of 𝑋(𝑡). FD processes are deterministic functions of time and 𝑑 < ∞ random variables. The discrepancy between target and FD samples is quantified by the metric of the space 𝐶[0, 𝜏] of continuous functions. The numerical illustrations, which include Gaussian/non-Gaussian FD processes and solutions of linear/nonlinear random vibration problems, are consistent with the theoretical findings in the paper. 
    more » « less
  2. Finite dimensional (FD) models, i.e., deterministic functions of space depending on finite sets of random variables, are used extensively in applications to generate samples of random fields Z(x) and construct approximations of solutions U(x) of ordinary or partial differential equations whose random coefficients depend on Z(x). FD models of Z(x) and U(x) constitute surrogates of these random fields which target various properties, e.g., mean/correlation functions or sample properties. We establish conditions under which samples of FD models can be used as substitutes for samples of Z(x) and U(x) for two types of random fields Z(x) and a simple stochastic equation. Some of these conditions are illustrated by numerical examples. 
    more » « less
  3. Numerical solutions of stochastic problems require the representation of random functions in their definitions by finite dimensional (FD) models, i.e., deterministic functions of time and finite sets of random variables. It is common to represent the coefficients of these FD surrogates by polynomial chaos (PC) models. We propose a novel model, referred to as the polynomial chaos translation (PCT) model, which matches exactly the marginal distributions of the FD coefficients and approximately their dependence. PC- and PCT- based FD models are constructed for a set of test cases and a wind pressure time series recorded at the boundary layer wind tunnel facility at the University of Florida. The PCT-based models capture the joint distributions of the FD coefficients and the extremes of target times series accurately while PC-based FD models do not have this capability. 
    more » « less
  4. Random dimensionality reduction is a versatile tool for speeding up algorithms for high-dimensional problems. We study its application to two clustering problems: the facility location problem, and the single-linkage hierarchical clustering problem, which is equivalent to computing the minimum spanning tree. We show that if we project the input pointset 𝑋 onto a random 𝑑=𝑂(𝑑𝑋)-dimensional subspace (where 𝑑𝑋 is the doubling dimension of 𝑋), then the optimum facility location cost in the projected space approximates the original cost up to a constant factor. We show an analogous statement for minimum spanning tree, but with the dimension 𝑑 having an extra loglog𝑛 term and the approximation factor being arbitrarily close to 1. Furthermore, we extend these results to approximating solutions instead of just their costs. Lastly, we provide experimental results to validate the quality of solutions and the speedup due to the dimensionality reduction. Unlike several previous papers studying this approach in the context of 𝑘-means and 𝑘-medians, our dimension bound does not depend on the number of clusters but only on the intrinsic dimensionality of 𝑋. 
    more » « less
  5. null (Ed.)
    We consider learning a sparse pairwise Markov Random Field (MRF) with continuous valued variables from i.i.d samples. We adapt the algorithm of Vuffray et al. (2019) to this setting and provide finite- sample analysis revealing sample complexity scaling logarithmically with the number of variables, as in the discrete and Gaussian settings. Our approach is applicable to a large class of pairwise MRFs with continuous variables and also has desirable asymptotic properties, including consistency and normality under mild conditions. Further, we establish that the population version of the optimization criterion employed by Vuffray et al. (2019) can be interpreted as local maximum likelihood estimation (MLE). As part of our analysis, we introduce a robust variation of sparse linear regression à la Lasso, which may be of interest in its own right. 
    more » « less