skip to main content

Title: A framework for ensemble modelling of climate change impacts on lakes worldwide: the ISIMIP Lake Sector
Abstract. Empirical evidence demonstrates that lakes and reservoirs are warming acrossthe globe. Consequently, there is an increased need to project futurechanges in lake thermal structure and resulting changes in lakebiogeochemistry in order to plan for the likely impacts. Previous studies ofthe impacts of climate change on lakes have often relied on a single modelforced with limited scenario-driven projections of future climate for arelatively small number of lakes. As a result, our understanding of theeffects of climate change on lakes is fragmentary, based on scatteredstudies using different data sources and modelling protocols, and mainlyfocused on individual lakes or lake regions. This has precludedidentification of the main impacts of climate change on lakes at global andregional scales and has likely contributed to the lack of lake water qualityconsiderations in policy-relevant documents, such as the Assessment Reportsof the Intergovernmental Panel on Climate Change (IPCC). Here, we describe asimulation protocol developed by the Lake Sector of the Inter-SectoralImpact Model Intercomparison Project (ISIMIP) for simulating climate changeimpacts on lakes using an ensemble of lake models and climate changescenarios for ISIMIP phases 2 and 3. The protocol prescribes lakesimulations driven by climate forcing from gridded observations anddifferent Earth system models under various representative greenhouse gasconcentration pathways (RCPs), all consistently bias-corrected on a0.5∘ × 0.5∘ global grid. In ISIMIP phase 2, 11 lakemodels were forced with these data to project the thermal structure of 62well-studied lakes where data were available for calibration underhistorical conditions, and using uncalibrated models for 17 500 lakesdefined for all global grid cells containing lakes. In ISIMIP phase 3, thisapproach was expanded to consider more lakes, more models, and moreprocesses. The ISIMIP Lake Sector is the largest international effort toproject future water temperature, thermal structure, and ice phenology oflakes at local and global scales and paves the way for future simulations ofthe impacts of climate change on water quality and biogeochemistry in lakes.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Geoscientific Model Development
Page Range / eLocation ID:
4597 to 4623
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Freshwater ecosystems provide vital services, yet are facing increasing risks from global change. In particular, lake thermal dynamics have been altered around the world as a result of climate change, necessitating a predictive understanding of how climate will continue to alter lakes in the future as well as the associated uncertainty in these predictions. Numerous sources of uncertainty affect projections of future lake conditions but few are quantified, limiting the use of lake modeling projections as management tools. To quantify and evaluate the effects of two potentially important sources of uncertainty, lake model selection uncertainty and climate model selection uncertainty, we developed ensemble projections of lake thermal dynamics for a dimictic lake in New Hampshire, USA (Lake Sunapee). Our ensemble projections used four different climate models as inputs to five vertical one-dimensional (1-D) hydrodynamic lake models under three different climate change scenarios to simulate thermal metrics from 2006 to 2099. We found that almost all the lake thermal metrics modeled (surface water temperature, bottom water temperature, Schmidt stability, stratification duration, and ice cover, but not thermocline depth) are projected to change over the next century. Importantly, we found that the dominant source of uncertainty varied among the thermal metrics, as thermal metrics associated with the surface waters (surface water temperature, total ice duration) were driven primarily by climate model selection uncertainty, while metrics associated with deeper depths (bottom water temperature, stratification duration) were dominated by lake model selection uncertainty. Consequently, our results indicate that researchers generating projections of lake bottom water metrics should prioritize including multiple lake models for best capturing projection uncertainty, while those focusing on lake surface metrics should prioritize including multiple climate models. Overall, our ensemble modeling study reveals important information on how climate change will affect lake thermal properties, and also provides some of the first analyses on how climate model selection uncertainty and lake model selection uncertainty interact to affect projections of future lake dynamics. 
    more » « less
  2. null (Ed.)
    Abstract. The concentration of oxygen is fundamental to lake water quality and ecosystem functioning through its control over habitat availability for organisms, redox reactions, and recycling of organic material. In many eutrophic lakes, oxygen depletion in the bottom layer (hypolimnion) occurs annually during summer stratification. The temporal and spatial extent of summer hypolimnetic anoxia is determined by interactions between the lake and its external drivers (e.g., catchment characteristics, nutrient loads, meteorology) as well as internal feedback mechanisms (e.g., organic matter recycling, phytoplankton blooms). How these drivers interact to control the evolution of lake anoxia over decadal timescales will determine, in part, the future lake water quality. In this study, we used a vertical one-dimensional hydrodynamic–ecological model (GLM-AED2) coupled with a calibrated hydrological catchment model (PIHM-Lake) to simulate the thermal and water quality dynamics of the eutrophic Lake Mendota (USA) over a 37 year period. The calibration and validation of the lake model consisted of a global sensitivity evaluation as well as the application of an optimization algorithm to improve the fit between observed and simulated data. We calculated stability indices (Schmidt stability, Birgean work, stored internal heat), identified spring mixing and summer stratification periods, and quantified the energy required for stratification and mixing. To qualify which external and internal factors were most important in driving the interannual variation in summer anoxia, we applied a random-forest classifier and multiple linear regressions to modeled ecosystem variables (e.g., stratification onset and offset, ice duration, gross primary production). Lake Mendota exhibited prolonged hypolimnetic anoxia each summer, lasting between 50–60 d. The summer heat budget, the timing of thermal stratification, and the gross primary production in the epilimnion prior to summer stratification were the most important predictors of the spatial and temporal extent of summer anoxia periods in Lake Mendota. Interannual variability in anoxia was largely driven by physical factors: earlier onset of thermal stratification in combination with a higher vertical stability strongly affected the duration and spatial extent of summer anoxia. A measured step change upward in summer anoxia in 2010 was unexplained by the GLM-AED2 model. Although the cause remains unknown, possible factors include invasion by the predacious zooplankton Bythotrephes longimanus. As the heat budget depended primarily on external meteorological conditions, the spatial and temporal extent of summer anoxia in Lake Mendota is likely to increase in the near future as a result of projected climate change in the region. 
    more » « less
  3. The LAGOS-US RESERVOIR data module (hereafter, RESERVOIR) classifies all 137,465 lakes > 4 hectares in the conterminous U.S. into one of the following three categories using a machine-learning predictive model based on visual interpretation of lake outlines and a classification rule based on lake shape. Natural Lakes (NLs) are defined as lakes that are likely to be entirely or mostly naturally-formed and that do not have large, flow-altering structures on or near them; Reservoir Class A’s (RSVR_A) are defined as lakes that are likely to be either human-made or highly human-altered by the presence of a relatively large water control structure that appears to significantly change the flow of water; and Reservoir Class B’s (RSVR_Bs) are lakes that are likely to be entirely human-made based on isolation from rivers and a highly angular shape that is rarely, if ever, seen in natural lakes also often. We trained the machine learning models on 12,162 manually-classified lakes to assign probabilities of a lake being in 1 of 2 of the categories (NL or RSVR), then we further classified the RSVR classification into either A or B based on NHD Fcodes, isolation, and angularity. The data module includes a detailed User Guide, metadata tables, and a data table that includes information such as location, lake geometry, surface water connectivity class, and official name. Using our definition, our classification indicates that over 46 % of lakes > 4 ha in the conterminous U.S. are reservoir lakes. These data can be combined with other LAGOS-US data modules and U.S. national databases using unique lake identifiers to study both reservoir lakes and natural lakes at broad scales. 
    more » « less
  4. null (Ed.)
    The marine-based West Antarctic Ice Sheet (WAIS) is currently locally retreating because of shifting wind-driven oceanic currents that transport warm waters toward the ice margin, resulting in ice shelf thinning and accelerated mass loss. Previous results from geologic drilling on Antarctica’s continental margins show significant variability in ice sheet extent during the late Neogene and Quaternary. Climate and ice sheet models indicate a fundamental role for oceanic heat in controlling ice sheet variability over at least the past 20 My. Although evidence for past ice sheet variability is available from ice-proximal marine settings, sedimentary sequences from the continental shelf and rise are required to evaluate the extent of past ice sheet variability and the associated forcings and feedbacks. International Ocean Discovery Program Expedition 374 drilled a latitudinal and depth transect of five sites from the outer continental shelf to rise in the central Ross Sea to resolve Neogene and Quaternary relationships between climatic and oceanic change and WAIS evolution. The Ross Sea was targeted because numerical ice sheet models indicate that this sector of Antarctica responds sensitively to changes in ocean heat flux. Expedition 374 was designed for optimal data-model integration to enable an improved understanding of Antarctic Ice Sheet (AIS) mass balance during warmer-than-present climates (e.g., the Pleistocene “super interglacials,” the mid-Pliocene, and the Miocene Climatic Optimum). The principal goals of Expedition 374 were to: 1. Evaluate the contribution of West Antarctica to far-field ice volume and sea level estimates; 2. Reconstruct ice-proximal oceanic and atmospheric temperatures to quantify past polar amplification; 3. Assess the role of oceanic forcing (e.g., temperature and sea level) on AIS variability; 4. Identify the sensitivity of the AIS to Earth’s orbital configuration under a variety of climate boundary conditions; and 5. Reconstruct Ross Sea paleobathymetry to examine relationships between seafloor geometry, ice sheet variability, and global climate. To achieve these objectives, postcruise studies will: 1. Use data and models to reconcile intervals of maximum Neogene and Quaternary ice advance and retreat with far-field records of eustatic sea level; 2. Reconstruct past changes in oceanic and atmospheric temperatures using a multiproxy approach; 3. Reconstruct Neogene and Quaternary sea ice margin fluctuations and correlate these records to existing inner continental shelf records; 4. Examine relationships among WAIS variability, Earth’s orbital configuration, oceanic temperature and circulation, and atmospheric pCO2; and 5. Constrain the timing of Ross Sea continental shelf overdeepening and assess its impact on Neogene and Quaternary ice dynamics. Expedition 374 departed from Lyttelton, New Zealand, in January 2018 and returned in March 2018. We recovered 1292.70 m of high-quality core from five sites spanning the early Miocene to late Quaternary. Three sites were cored on the continental shelf (Sites U1521, U1522, and U1523). At Site U1521, we cored a 650 m thick sequence of interbedded diamictite and diatom-rich mudstone penetrating seismic Ross Sea Unconformity 4 (RSU4). The depositional reconstructions of past glacial and open-marine conditions at this site will provide unprecedented insight into environmental change on the Antarctic continental shelf during the late early and middle Miocene. At Site U1522, we cored a discontinuous late Miocene to Pleistocene sequence of glacial and glaciomarine strata from the outer shelf with the primary objective of penetrating and dating RSU3, which is interpreted to reflect the first continental shelf–wide expansion of East and West Antarctic ice streams. Site U1523, located on the outer continental shelf, targeted a sediment drift beneath the westward-flowing Antarctic Slope Current (ASC) to test the hypothesis that changes in ASC vigor regulate ocean heat flux onto the continental shelf and thus ice sheet mass balance. We also cored two sites on the continental rise and slope. At Site U1524, we recovered a Plio–Pleistocene sedimentary sequence from the levee of the Hillary Canyon, one of the largest conduits of Antarctic Bottom Water from the continental shelf to the abyssal ocean. Site U1524 was designed to penetrate into middle Miocene and older strata, but coring was initially interrupted by drifting sea ice that forced us to abandon coring in Hole U1524A at 399.5 m drilling depth below seafloor (DSF). We moved to a nearby alternate site on the continental slope (Site U1525) to core a single hole designed to complement the record at Site U1524. We returned to Site U1524 after the sea ice cleared and cored Hole U1524C with the rotary core barrel system with the intention of reaching the target depth of 1000 m DSF. However, we were forced to terminate Hole U1524C at 441.9 m DSF because of a mechanical failure with the vessel that resulted in termination of all drilling operations and forced us to return to Lyttelton 16 days earlier than scheduled. The loss of 39% of our operational days significantly impacted our ability to achieve all Expedition 374 objectives. In particular, we were not able to recover continuous middle Miocene sequences from the continental rise designed to complement the discontinuous record from continental shelf Site U1521. The mechanical failure also meant we could not recover cores from proposed Site RSCR-19A, which was targeted to obtain a high-fidelity, continuous record of upper Neogene and Quaternary pelagic/hemipelagic sedimentation. Despite our failure to recover a continental shelf-to-rise Miocene transect, records from Sites U1522, U1524, and U1525 and legacy cores from the Antarctic Geological Drilling Project (ANDRILL) can be integrated to develop a shelf-to-rise Plio–Pleistocene transect. 
    more » « less
  5. Abstract. The tropical tropopause layer (TTL) is a sea of vertical motions. Convectively generated gravity waves create vertical winds on scales of a few to thousands of kilometers as they propagate in a stable atmosphere. Turbulence from gravity wave breaking, radiatively driven convection, and Kelvin–Helmholtz instabilities stirs up the TTL on the kilometer scale. TTL cirrus clouds, which moderate the water vapor concentration in the TTL and stratosphere, form in the cold phases of large-scale (> 100 km) wave activity. It has been proposed in several modeling studies that small-scale (< 100 km) vertical motions control the ice crystal number concentration and the dehydration efficiency of TTL cirrus clouds. Here, we present the first observational evidence for this. High-rate vertical winds measured by aircraft are a valuable and underutilized tool for constraining small-scale TTL vertical wind variability, examining its impacts on TTL cirrus clouds, and evaluating atmospheric models. We use 20 Hz data from five National Aeronautics and Space Administration (NASA) campaigns to quantify small-scale vertical wind variability in the TTL and to see how it varies with ice water content, distance from deep convective cores, and height in the TTL. We find that 1 Hz vertical winds are well represented by a normal distribution, with a standard deviation of 0.2–0.4 m s−1. Consistent with a previous observational study that analyzed two out of the five aircraft campaigns that we analyze here, we find that turbulence is enhanced over the tropical west Pacific and within 100 km of convection and is most common in the lower TTL (14–15.5 km), closer to deep convection, and in the upper TTL (15.5–17 km), further from deep convection. An algorithm to classify turbulence and long-wavelength (5 km < λ < 100 km) and short-wavelength (λ < 5 km) gravity wave activity during level flight legs is applied to data from the Airborne Tropical TRopopause EXperiment (ATTREX). The most commonly sampled conditions are (1) a quiescent atmosphere with negligible small-scale vertical wind variability, (2) long-wavelength gravity wave activity (LW GWA), and (3) LW GWA with turbulence. Turbulence rarely occurs in the absence of gravity wave activity. Cirrus clouds with ice crystal number concentrations exceeding 20 L−1 and ice water content exceeding 1 mg m−3 are rare in a quiescent atmosphere but about 20 times more likely when there is gravity wave activity and 50 times more likely when there is also turbulence, confirming the results of the aforementioned modeling studies. Our observational analysis shows that small-scale gravity waves strongly influence the ice crystal number concentration and ice water content within TTL cirrus clouds. Global storm-resolving models have recently been run with horizontal grid spacing between 1 and 10 km, which is sufficient to resolve some small-scale gravity wave activity. We evaluate simulated vertical wind spectra (10–100 km) from four global storm-resolving simulations that have horizontal grid spacing of 3–5 km with aircraft observations from ATTREX. We find that all four models have too little resolved vertical wind at horizontal wavelengths between 10 and 100 km and thus too little small-scale gravity wave activity, although the bias is much less pronounced in global SAM than in the other models. We expect that deficient small-scale gravity wave activity significantly limits the realism of simulated ice microphysics in these models and that improved representation requires moving to finer horizontal and vertical grid spacing. 
    more » « less