skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The timing of Start is determined primarily by increased synthesis of the Cln3 activator rather than dilution of the Whi5 inhibitor
In their Letter to Molecular Biology of the Cell, Schmoller et al. (2022) raise questions about the results and conclusions presented in our published studies (Dorsey et al., 2018; Litsios et al., 2019). Here, we respond to the criticisms of Schmoller et al. and demonstrate how wide-field fluorescence microscopy experiments to determine nuclear Whi5 concentration dynamics can be confounded by uncontrolled effects, which include photobleaching, partial confocal effects, and nuclear-to-cytoplasmic volume scaling. Further, we provide additional experimental evidence demonstrating that nuclear Whi5 concentration is essentially constant as cells grow in G1 phase and that Cln3 and protein synthesis dynamics occur as reported in Litsios et al. (2019). These results suggest that instead of being triggered by dilution of the stable inhibitor Whi5, Start is rather primarily controlled by the increase in protein synthesis rate in G1 and the concomitant production of the unstable activator Cln3.  more » « less
Award ID(s):
1806638
PAR ID:
10338168
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Sophie Martin
Date Published:
Journal Name:
Molecular biology of the cell
Volume:
33
ISSN:
1059-1524
Page Range / eLocation ID:
1-14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The life cycle of biomedical and agriculturally relevant eukaryotic microorganisms involves complex transitions between proliferative and non-proliferative states such as dormancy, mating, meiosis, and cell division. New drugs, pesticides, and vaccines can be created by targeting specific life cycle stages of parasites and pathogens. However, defining the structure of a microbial life cycle often relies on partial observations that are theoretically assembled in an ideal life cycle path. To create a more quantitative approach to studying complete eukaryotic life cycles, we generated a deep learning-driven imaging framework to track microorganisms across sexually reproducing generations. Our approach combines microfluidic culturing, life cycle stage-specific segmentation of microscopy images using convolutional neural networks, and a novel cell tracking algorithm, FIEST, based on enhancing the overlap of single cell masks in consecutive images through deep learning video frame interpolation. As proof of principle, we used this approach to quantitatively image and compare cell growth and cell cycle regulation across the sexual life cycle ofSaccharomyces cerevisiae. We developed a fluorescent reporter system based on a fluorescently labeled Whi5 protein, the yeast analog of mammalian Rb, and a new High-Cdk1 activity sensor, LiCHI, designed to report during DNA replication, mitosis, meiotic homologous recombination, meiosis I, and meiosis II. We found that cell growth preceded the exit from non-proliferative states such as mitotic G1, pre-meiotic G1, and the G0 spore state during germination. A decrease in the total cell concentration of Whi5 characterized the exit from non-proliferative states, which is consistent with a Whi5 dilution model. The nuclear accumulation of Whi5 was developmentally regulated, being at its highest during meiotic exit and spore formation. The temporal coordination of cell division and growth was not significantly different across three sexually reproducing generations. Our framework could be used to quantitatively characterize other single-cell eukaryotic life cycles that remain incompletely described. An off-the-shelf user interfaceYeastvisionprovides free access to our image processing and single-cell tracking algorithms. 
    more » « less
  2. Cells must couple cell-cycle progress to their growth rate to restrict the spread of cell sizes present throughout a population. Linear, rather than exponential, accumulation of Whi5, was proposed to provide this coordination by causing a higher Whi5 concentration in cells born at a smaller size. We tested this model using the inducibleGAL1promoter to make the Whi5 concentration independent of cell size. At an expression level that equalizes the mean cell size with that of wild-type cells, the size distributions of cells with galactose-induced Whi5 expression and wild-type cells are indistinguishable. Fluorescence microscopy confirms that the endogenous andGAL1promoters produce different relationships between Whi5 concentration and cell volume without diminishing size control in the G1 phase. We also expressed Cln3 from the GAL1 promoter, finding that the spread in cell sizes for an asynchronous population is unaffected by this perturbation. Our findings indicate that size control in budding yeast does not fundamentally originate from the linear accumulation of Whi5, contradicting a previous claim and demonstrating the need for further models of cell-cycle regulation to explain how cell size controls passage through Start. 
    more » « less
  3. Martin, Sophie G. (Ed.)
    Commitment to cell division at the end of G1 phase, termed Start in the budding yeast Saccharomyces cerevisiae , is strongly influenced by nutrient availability. To identify new dominant activators of Start that might operate under different nutrient conditions, we screened a genome-wide ORF overexpression library for genes that bypass a Start arrest caused by absence of the G1 cyclin Cln3 and the transcriptional activator Bck2. We recovered a hypothetical gene YLR053c , renamed NRS1 for Nitrogen-Responsive Start regulator 1, which encodes a poorly characterized 108 amino acid microprotein. Endogenous Nrs1 was nuclear-localized, restricted to poor nitrogen conditions, induced upon TORC1 inhibition, and cell cycle-regulated with a peak at Start. NRS1 interacted genetically with SWI4 and SWI6 , which encode subunits of the main G1/S transcription factor complex SBF. Correspondingly, Nrs1 physically interacted with Swi4 and Swi6 and was localized to G1/S promoter DNA. Nrs1 exhibited inherent transactivation activity, and fusion of Nrs1 to the SBF inhibitor Whi5 was sufficient to suppress other Start defects. Nrs1 appears to be a recently evolved microprotein that rewires the G1/S transcriptional machinery under poor nitrogen conditions. 
    more » « less
  4. This paper addresses the end-to-end sample complexity bound for learning the H2 optimal controller (the Linear Quadratic Gaussian (LQG) problem) with unknown dynamics, for potentially unstable Linear Time Invariant (LTI) systems. The robust LQG synthesis procedure is performed by considering bounded additive model uncertainty on the coprime factors of the plant. The closed-loopi dentification of the nominal model of the true plant is performed by constructing a Hankel-like matrix from a single time-series of noisy finite length input-output data, using the ordinary least squares algorithm from Sarkar and Rakhlin (2019). Next, an H∞ bound on the estimated model error is provided and the robust controller is designed via convex optimization, much in the spirit of Mania et al. (2019) and Zheng et al. (2020b), while allowing for bounded additive uncertainty on the coprime factors of the model. Our conclusions are consistent with previous results on learning the LQG and LQR controllers. 
    more » « less
  5. Concentration of measure has been argued to be the fundamental cause of adversarial vulnerability. Mahloujifar et al. (2019) presented an empirical way to measure the concentration of a data distribution using samples, and employed it to find lower bounds on intrinsic robustness for several benchmark datasets. However, it remains unclear whether these lower bounds are tight enough to provide a useful approximation for the intrinsic robustness of a dataset. To gain a deeper understanding of the concentration of measure phenomenon, we first extend the Gaussian Isoperimetric Inequality to non-spherical Gaussian measures and arbitrary ℓp-norms (p ≥ 2). We leverage these theoretical insights to design a method that uses half-spaces to estimate the concentration of any empirical dataset under ℓp-norm distance metrics. Our proposed algorithm is more efficient than Mahloujifar et al. (2019)‘s, and experiments on synthetic datasets and image benchmarks demonstrate that it is able to find much tighter intrinsic robustness bounds. These tighter estimates provide further evidence that rules out intrinsic dataset concentration as a possible explanation for the adversarial vulnerability of state-of-the-art classifiers. 
    more » « less