skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rapid construction of tetrahydropyridine scaffolds via formal imino Diels–Alder reactions of Schiff bases and Nazarov reagents
Described is a one-flask, two-step method for the synthesis of highly functionalized piperidines. The process involves formal [4 + 2] cycloadditions of Schiff bases and Nazarov reagents, followed by facile elaborations of the initial cycloadducts. Notably, these aza-annulations are facilitated by protic solvents and proceed smoothly under ambient conditions, without other additives. The synthetic utility of this annulation protocol is further showcased through a concise, convergent synthesis of (±)-tetrabenazine.  more » « less
Award ID(s):
1566402
PAR ID:
10338235
Author(s) / Creator(s):
;
Editor(s):
Mukherjee, S.
Date Published:
Journal Name:
Organic biomolecular chemistry
Volume:
17
ISSN:
1477-0520
Page Range / eLocation ID:
8827-8831
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Applying AI power to predict syntheses of novel materials requires high-quality, large-scale datasets. Extraction of synthesis information from scientific publications is still challenging, especially for extracting synthesis actions, because of the lack of a comprehensive labeled dataset using a solid, robust, and well-established ontology for describing synthesis procedures. In this work, we propose the first unified language of synthesis actions (ULSA) for describing inorganic synthesis procedures. We created a dataset of 3040 synthesis procedures annotated by domain experts according to the proposed ULSA scheme. To demonstrate the capabilities of ULSA, we built a neural network-based model to map arbitrary inorganic synthesis paragraphs into ULSA and used it to construct synthesis flowcharts for synthesis procedures. Analysis of the flowcharts showed that (a) ULSA covers essential vocabulary used by researchers when describing synthesis procedures and (b) it can capture important features of synthesis protocols. The present work focuses on the synthesis protocols for solid-state, sol–gel, and solution-based inorganic synthesis, but the language could be extended in the future to include other synthesis methods. This work is an important step towards creating a synthesis ontology and a solid foundation for autonomous robotic synthesis. 
    more » « less
  2. Despite remarkable progress, colloidal synthesis of metal nanocrystal is still far away from reaching the goal for robust, reproducible, and scalable production. Even with the adoption of seed-mediated growth, the synthesis can still be complicated by issues such as self-nucleation, galvanic replacement, stochastic symmetry reduction, and unwanted compositional variation. All these issues can be addressed by switching to steady-state synthesis characterized by a slow, constant, and tightly controlled reduction rate. Steady-state synthesis can be achieved by adding one reactant dropwise while using the other reactant in large excess, but this method is not suitable for scale-up production in a continuous flow reactor. There is a pressing need to develop alternative methods capable of establishing the steady-state kinetics characteristic of dropwise addition while introducing both reactants by one-shot injection. In this Perspective, we discuss a number of methods that allow for both one-shot injection and steady-state synthesis. 
    more » « less
  3. Abstract Synthesis of nanoparticles and particulate nanomaterials with tailored properties is a central step toward many applications ranging from energy conversion and imaging/display to biosensing and nanomedicine. While existing microfluidics‐based synthesis methods offer precise control over the synthesis process, most of them rely on passive, partial mixing of reagents, which limits their applicability and potentially, adversely alter the properties of synthesized products. Here, an acoustofluidic (i.e., the fusion of acoustic and microfluidics) synthesis platform is reported to synthesize nanoparticles and nanomaterials in a controllable, reproducible manner through acoustic‐streaming‐based active mixing of reagents. The acoustofluidic strategy allows for the dynamic control of the reaction conditions simply by adjusting the strength of the acoustic streaming. With this platform, the synthesis of versatile nanoparticles/nanomaterials is demonstrated including the synthesis of polymeric nanoparticles, chitosan nanoparticles, organic–inorganic hybrid nanomaterials, metal–organic framework biocomposites, and lipid‐DNA complexes. The acoustofluidic synthesis platform, when incorporated with varying flow rates, compositions, or concentrations of reagents, will lend itself unprecedented flexibility in establishing various reaction conditions and thus enable the synthesis of versatile nanoparticles and nanomaterials with prescribed properties. 
    more » « less
  4. In program synthesis there is a well-known trade-off between concise and strong specifications: if a specification is too verbose, it might be harder to write than the program; if it is too weak, the synthesised program might not match the user’s intent. In this work we explore the use of annotations for restricting memory access permissions in program synthesis, and show that they can make specifications much stronger while remaining surprisingly concise. Specifically, we enhance Synthetic Separation Logic (SSL), a framework for synthesis of heap-manipulating programs, with the logical mechanism of read-only borrows. We observe that this minimalistic and conservative SSL extension benefits the synthesis in several ways, making it more (a) expressive (stronger correctness guarantees are achieved with a modest annotation overhead), (b) effective (it produces more concise and easier-to-read programs), (c) efficient (faster synthesis), and (d) robust (synthesis efficiency is less affected by the choice of the search heuristic). We explain the intuition and provide formal treatment for read-only borrows. We substantiate the claims (a)–(d) by describing our quantitative evaluation of the borrowing-aware synthesis implementation on a series of standard benchmark specifications for various heap-manipulating programs. 
    more » « less
  5. Abstract The development of a materials synthesis route is usually based on heuristics and experience. A possible new approach would be to apply data-driven approaches to learn the patterns of synthesis from past experience and use them to predict the syntheses of novel materials. However, this route is impeded by the lack of a large-scale database of synthesis formulations. In this work, we applied advanced machine learning and natural language processing techniques to construct a dataset of 35,675 solution-based synthesis procedures extracted from the scientific literature. Each procedure contains essential synthesis information including the precursors and target materials, their quantities, and the synthesis actions and corresponding attributes. Every procedure is also augmented with the reaction formula. Through this work, we are making freely available the first large dataset of solution-based inorganic materials synthesis procedures. 
    more » « less