skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient Computer Vision on Edge Devices with Pipeline-Parallel Hierarchical Neural Networks
Computer vision on low-power edge devices enables applications including search-and-rescue and security. State-of-the-art computer vision algorithms, such as Deep Neural Networks (DNNs), are too large for inference on low-power edge devices. To improve efficiency, some existing approaches parallelize DNN inference across multiple edge devices. How-ever, these techniques introduce significant communication and synchronization overheads or are unable to balance workloads across devices. This paper demonstrates that the hierarchical DNN architecture is well suited for parallel processing on multiple edge devices. We design a novel method that creates a parallel inference pipeline for computer vision problems that use hierarchical DNNs. The method balances loads across the collaborating devices and reduces communication costs to facilitate the processing of multiple video frames simultaneously with higher throughput. Our experiments consider a representative computer vision problem where image recognition is performed on each video frame, running on multiple Raspberry Pi 4Bs. With four collaborating low-power edge devices, our approach achieves 3.21× higher throughput, 68% less energy consumption per device per frame, and a 58% decrease in memory when compared with existing sinaledevice hierarchical DNNs.  more » « less
Award ID(s):
2107020
PAR ID:
10338337
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)
Page Range / eLocation ID:
532 to 537
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Low-power computer vision on embedded devices has many applications. This paper describes a low-power technique for the object re-identification (reID) problem: matching a query image against a gallery of previously-seen images. State-of-the-art techniques rely on large, computationally-intensive Deep Neural Networks (DNNs). We propose a novel hierarchical DNN architecture that uses attribute labels in the training dataset to perform efficient object reID. At each node in the hierarchy, a small DNN identifies a different attribute of the query image. The small DNN at each leaf node is specialized to re-identify a subset of the gallery---only the images with the attributes identified along the path from the root to a leaf. Thus, a query image is re-identified accurately after processing with a few small DNNs. We compare our method with state-of-the-art object reID techniques. With a ~4% loss in accuracy, our approach realizes significant resource savings: 74% less memory, 72% fewer operations, and 67% lower query latency, yielding 65% less energy consumption. 
    more » « less
  2. null (Ed.)
    Deep neural networks (DNNs) are increasingly used for real-time inference, requiring low latency, but require significant computational power as they continue to increase in complexity. Edge clouds promise to offer lower latency due to their proximity to end-users and having powerful accelerators like GPUs to provide the computation power needed for DNNs. But it is also important to ensure that the edge-cloud resources are utilized well. For this, multiplexing several DNN models through spatial sharing of the GPU can substantially improve edge-cloud resource usage. Typical GPU runtime environments have significant interactions with the CPU, to transfer data to the GPU, for CPU-GPU synchronization on inference task completions, etc. These result in overheads. We present a DNN inference framework with a set of software primitives that reduce the overhead for DNN inference, increase GPU utilization and improve performance, with lower latency and higher throughput. Our first primitive uses the GPU DMA effectively, reducing the CPU cycles spent to transfer the data to the GPU. A second primitive uses asynchronous ‘events’ for faster task completion notification. GPU runtimes typically preclude fine-grained user control on GPU resources, causing long GPU downtimes when adjusting resources. Our third primitive supports overlapping of model-loading and execution, thus allowing GPU resource re-allocation with very little GPU idle time. Our other primitives increase inference throughput by improving scheduling and processing more requests. Overall, our primitives decrease inference latency by more than 35% and increase DNN throughput by 2-3×. 
    more » « less
  3. In the past decade, Deep Neural Networks (DNNs), e.g., Convolutional Neural Networks, achieved human-level performance in vision tasks such as object classification and detection. However, DNNs are known to be computationally expensive and thus hard to be deployed in real-time and edge applications. Many previous works have focused on DNN model compression to obtain smaller parameter sizes and consequently, less computational cost. Such methods, however, often introduce noticeable accuracy degradation. In this work, we optimize a state-of-the-art DNN-based video detection framework—Deep Feature Flow (DFF) from the cloud end using three proposed ideas. First, we propose Asynchronous DFF (ADFF) to asynchronously execute the neural networks. Second, we propose a Video-based Dynamic Scheduling (VDS) method that decides the detection frequency based on the magnitude of movement between video frames. Last, we propose Spatial Sparsity Inference, which only performs the inference on part of the video frame and thus reduces the computation cost. According to our experimental results, ADFF can reduce the bottleneck latency from 89 to 19 ms. VDS increases the detection accuracy by 0.6% mAP without increasing computation cost. And SSI further saves 0.2 ms with a 0.6% mAP degradation of detection accuracy. 
    more » « less
  4. Vision-based perception systems are crucial for profitable autonomous-driving vehicle products. High accuracy in such perception systems is being enabled by rapidly evolving convolution neural networks (CNNs). To achieve a better understanding of its surrounding environment, a vehicle must be provided with full coverage via multiple cameras. However, when processing multiple video streams, existing CNN frameworks often fail to provide enough inference performance, particularly on embedded hardware constrained by size, weight, and power limits. This paper presents the results of an industrial case study that was conducted to re-think the design of CNN software to better utilize available hardware resources. In this study, techniques such as parallelism, pipelining, and the merging of per-camera images into a single composite image were considered in the context of a Drive PX2 embedded hardware platform. The study identifies a combination of techniques that can be applied to increase throughput (number of simultaneous camera streams) without significantly increasing per-frame latency (camera to CNN output) or reducing per-stream accuracy. 
    more » « less
  5. Deep neural network (DNN) inference poses unique challenges in serving computational requests due to high request intensity, concurrent multi-user scenarios, and diverse heterogeneous service types. Simultaneously, mobile and edge devices provide users with enhanced computational capabilities, enabling them to utilize local resources for deep inference processing. Moreover, dynamic inference techniques allow content-based computational cost selection per request. This paper presents Dystri, an innovative framework devised to facilitate dynamic inference on distributed edge infrastructure, thereby accommodating multiple heterogeneous users. Dystri offers a broad applicability in practical environments, encompassing heterogeneous device types, DNN-based applications, and dynamic inference techniques, surpassing the state-of-the-art (SOTA) approaches. With distributed controllers and a global coordinator, Dystri allows per-request, per-user adjustments of quality-of-service, ensuring instantaneous, flexible, and discrete control. The decoupled workflows in Dystri naturally support user heterogeneity and scalability, addressing crucial aspects overlooked by existing SOTA works. Our evaluation involves three multi-user, heterogeneous DNN inference service platforms deployed on distributed edge infrastructure, encompassing seven DNN applications. Results show Dystri achieves near-zero deadline misses and excels in adapting to varying user numbers and request intensities. Dystri outperforms baselines with accuracy improvement up to 95 ×. 
    more » « less